J . Org. Chem. 2001, 66, 8135-8138
8135
Novel Syn th eses of Cis a n d Tr a n s Isom er s of Com br eta sta tin A-4
Keira Gaukroger,†,‡ J ohn A. Hadfield,*,§, Lucy A. Hepworth,‡ Nicholas J . Lawrence,‡,| and
Alan T. McGown†
CRC Drug Development Group and CRC Radiochemical Targeting and Imaging Group,
Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, M20 4BX, U.K.,
Department of Chemistry, UMIST, P.O. Box 88, Sackville Street, Manchester, M60 1QD, U.K.,
Chemistry Department, Cardiff University, P.O. Box 912, Cardiff, CF10 3TB, U.K., and Centre for
Molecular Drug Design, Department of Chemistry, University of Salford, Manchester, M5 4WT, U.K.
j.a.hadfield@salford.ac.uk
Received J uly 23, 2001
A high-yielding, two-step stereoselective synthesis of the anticancer drug (Z)-combretastatin A-4
(1) has been devised. The method uses the Perkin condensation of 3,4,5-trimethoxyphenylacetic
acid and 3-hydroxy-4-methoxybenzaldehyde followed by decarboxylation of the cinnamic acid
intermediate using copper and quinoline. The iodine-catalyzed isomerization of the Z isomer 1 results
in complete conversion to the E isomer. The Suzuki cross-coupling of an aryl boronic acid and vinyl
bromide has also been successfully employed to produce both Z and E isomers of combretastatin
A-4 stereoselectively. Both methods are far superior to the current five-step Wittig synthesis in
which both isomers are produced nonstereoselectively.
In tr od u ction
Most syntheses of the combretastatins and analogues
utilize the Wittig reaction.2c,5 The route developed by
Pettit et al.5c is representative. They reported a five-step
method from 3,4,5-trimethoxybenzyltriphenylphosphonium
bromide and isovanillin using n-butyllithium as the base.
Both cis 1 and trans 3 isomers of combretastatin A-4 were
produced in a ratio of 1:1.5, with the overall yield of the
cis isomer being 19%. The best selectivity reported was
obtained on reaction of 3,4,5-trimethoxybenzyltriphen-
ylphosphonium bromide with the bis-tert-butylphosphate
ester of isovanillin.5f A 4:1 mixture of Z:E stereoisomers
was obtained in a route to the prodrug 2. The Wittig
method is, therefore, problematic on two counts. First,
owing to the lack of or poor stereoselectivity, the yield of
the desired Z isomer is reduced, and, second, a separation
process is required. The isomers of combretastatin A-4
are difficult to separate, particularly by chromatography.
The combretastatins are a group of antimitotic agents
isolated from the bark of the South African tree Com-
bretum caffrum. The most potent of these is combret-
astatin A-41 which has been found to be a potent cytotoxic
agent which strongly inhibits the polymerization of
tubulin by binding to the colchicine site.2 Combretastatin
A-4 (1) is also able to elicit irreversible vascular shutdown
within solid tumors, leaving normal vasculature intact.3
A prodrug of combretastatin A-4, the water soluble phos-
phate derivative4 2 is now in phase II of clinical trials.
(1) (a) Lin, C. M.; Ho, H. H.; Pettit, G. R.; Hamel, E. Biochemistry
1989, 28, 6984. (b) Pettit, G. R.; Cragg, G. M.; Singh, S. B. J . Nat.
Prod. 1987, 50, 386. (c) Pettit, G. R.; Singh, S. B.; Cragg, G. M. J . Org.
Chem. 1985, 50, 3404. (d) Pettit, G. R.; Cragg, G. M.; Herald, D. L.;
Schmidt, J . M.; Lohavanijaya, P. Can. J . Chem. 1982, 60, 1374. (e)
Pettit, G. R.; Singh, S. B.; Hamel, E.; Lin, C. M.; Alberts, D. S.; Garcia-
Kendall, D. Experientia 1989, 45, 209.
(2) (a) Hamel, E., Lin, C. M. Biochem. Pharmacol. 1983, 32, 3863.
(b) McGown, A. T.; Fox, B. W. Anti-Cancer Drug Des. 1989, 3, 249. (c)
Lin, C. M.; Singh, S. B.; Chu, P. S.; Dempcy, R. O.; Schmidt, J . M.;
Pettit, G. R.; Hamel, E. Mol. Pharmacol. 1988, 34, 200.
(3) (a) Chaplin, D. J .; Pettit, G. R.; Parkins, C. S.; Hill, S. A. Br. J .
Cancer 1996, 74, S86. (b) Dark, G. G.; Hill, S. A.; Prise, V. E.; Tozer,
G. M.; Pettit, G. R.; Chaplin, D. J . Cancer Res. 1997, 57, 1829.
(4) (a) Pettit, G. R.; Temple, C.; Narayanan, V. L.; Varma, R.;
Simpson, M. J .; Boyd, M. R.; Rener, G. A.; Bansal, N. Anti-Cancer Drug
Des. 1995, 10, 299. (b) Pettit, G. R.; Rhodes, M. R. Anti-Cancer Drug
Des. 1998, 13, 183.
(5) (a) Cushman, M.; Nagarathnam, D.; Gopal, D.; Chakraborti, A.
K.; Lin, C. M.; Hamel, E. J . Med. Chem. 1991, 34, 2579. (b) Cushman,
M.; Nagarathnam, D.; Gopal, D.; He, H.-M.; Lin, C. M.; Hamel, E. J .
Med. Chem. 1992, 35, 2293. (c) Pettit, G. R.; Singh, S. B.; Boyd, M. R.;
Hamel, E.; Pettit, R. K.; Schmidt, J . M.; Hogan, F. J . Med. Chem. 1995,
38, 1666. (d) Pettit, G. R. U.S. Patent 5,561,222, 1996. (e) Woods, J .
A.; Hadfield, J . A.; Pettit, G. R.; Fox, B. W.; McGown, A. T. Br. J .
Cancer 1995, 71, 705. (f) Bedford, S. B.; Quaterman, C. P.; Rathbone,
D. L.; Slack, J . A.; Griffin, R. J .; Stevens, M. F. G. Bioorg. Med. Chem.
Lett. 1996, 6, 157.
Structure activity relationship analyses of the com-
bretastatins indicate that the cis configuration of the
stilbene unit is the most important factor for inhibition
of cancer cell growth.5 E stilbenes show a dramatic
decrease in their inhibitory effects on cancer cell growth
and tubulin polymerization when compared to their
corresponding Z isomers.
† CRC Drug Development Group, Paterson Institute for Cancer
Research.
‡ UMIST.
§ CRC Radiochemical Targeting and Imaging Group, Paterson
Institute for Cancer Research.
| Cardiff University.
University of Salford.
10.1021/jo015959z CCC: $20.00 © 2001 American Chemical Society
Published on Web 11/02/2001