12740
J. Am. Chem. Soc. 2001, 123, 12740-12741
be 0.4 nM. Preliminary studies in humans appear to suggest that
[18F]FDDNP showed a higher retention in regions of the brain
suspected of having tangles and plaques, and the PET images
were consistent with autoradiography and staining of postmortem
brain samples.24 A neutral thioflavin (benzothiazole) derivative,
[3H]BTA-1, was recently reported. [3H]BTA-1 showed an excel-
lent affinity (Kd ) 3 nM) in in vitro binding assay using Aâ1-40
aggregates. When [11C]BTA-1 was injected intravenously into
mice, it showed an excellent brain penetration with an initial brain
uptake at 2 min of 3.0% dose/organ.25-27 Our laboratory has
reported two types of iodinated probes, styrylbenzenes (IMSB)
and thioflavins (benzothiazole, TZDM), for binding to Aâ
aggregates.28,29 In vitro binding studies of these ligands showed
excellent binding affinities with Kd values of 0.13 and 0.06 nM
for aggregates of Aâ1-40 and 0.73 and 0.14 nM for aggregates of
Aâ1-42, respectively. More importantly, under a competitive-
binding assaying condition, two different and distinctive binding
sites on Aâ1-40 and Aâ1-42 aggregates, which are mutually
exclusive, were observed for styrylbenzenes (SB) and thioflavins
(benzothiazole, TZ). Significantly, [125I]TZDM crossed intact
blood-brain barrier and localized in the brain of normal mice
after an intravenous injection.28 For in vivo imaging of Aâ
aggregates to succeed, it will be necessary to develop agents which
show good brain uptake in vivo. Brain penetration, a key factor
for consideration, is usually related to the molecular size,
neutrality, and lipophilicity. Further refinements of these probes
are necessary to improve the brain uptake and washout from the
normal brain regions and to achieve a high retention in the regions
rich in Aâ plaques.
Novel Stilbenes as Probes for Amyloid Plaques
Hank F. Kung,*,†,‡ Chi-Wan Lee,† Zhi-Ping Zhuang,†
Mei-Ping Kung,† Catherine Hou,† and Karl Plo¨ssl†
Departments of Radiology and Pharmacology
UniVersity of PennsylVania, Room 305
3700 Market Street, Philadelphia, PennsylVania 19104
ReceiVed July 26, 2001
Alzheimer’s disease (AD) is a neurodegenerative disease of
the brain characterized by dementia, cognitive impairment, and
memory loss. Formation and accumulation of aggregates of
â-amyloid (Aâ) peptides in the brain are critical factors in the
development and progression of AD. The fibrillar aggregates of
amyloid peptides, Aâ1-40 and Aâ1-42, are major metabolic
peptides derived from amyloid precursor protein found in senile
plaques and cerebrovascular amyloid deposits in AD patients.1
Prevention and reversal of Aâ plaque formation by immunization
with Aâ peptides,2,3 or by inhibitors of secretases,4-7 are being
targeted as a treatment for this disease.6,8,9 Currently, the only
definitive confirmation of AD is by postmortem histopathological
examination of amyloid deposits in the brain. Early appraisal of
clinical symptoms for diagnosis of AD is often difficult and
unreliable.10 Therefore, there is an urgent need for in vivo imaging
agents, which can specifically demonstrate the location and density
of amyloid plaques in the brain. The Aâ-plaque-specific imaging
agents will be useful for early detection or monitoring the
progression and effectiveness of treatment of AD.11 Imaging
agents may be labeled by using either one of the two types of
isotopes: 99mTc (T1/2, 6 h; 140 keV) and 123I (T1/2, 13 h; 159 keV)
are routinely used for single photon emission computed tomo-
To search for new Aâ probes, a large series of benzothiazole
and stilbenes (1-3) purchased from Aldrich Chemical Inc.
(Milwaukee, WI) was screened by in vitro binding assays.
Serendipitously, two of them (1 and 2) are analogues of TZDM
and showed strikingly high binding affinities for the TZ binding
sites (Ki ) 2.3 and 1.4 nM, respectively), while E-stilbene and 3
graphy (SPECT), while 11C (T1/2, 20 min; 511 keV) and 18F (T1/2
,
110 min; 511 keV) are commonly used for positron emission
tomography (PET). In addition, successful agents will have to
be relatively small in molecular size, neutral and lipophilic for
brain penetration, and show selective and high binding affinity
to Aâ aggregates in vivo. Many attempts on developing such
agents based on Chrysamine-G (CG) or Congo Red derivatives
have been reported,12-21 but the efforts have not yielded any useful
imaging agents. Recently, a small but highly lipophilic probe,
[18F]FDDNP, for binding tangles and plaques has been re-
ported.22,23 Using an in vitro fluorescent titration method, the
binding affinity of FDDNP to Aâ aggregates was determined to
(12) Ashburn, T. T.; Han, H.; McGuinness, B. F.; Lansbury, P. T., Jr. Chem.
Biol. 1996, 3, 351-358.
(13) Han, G.; Cho, C.-G.; Lansbury, P. T., Jr. J. Am. Chem. Soc. 1996,
118, 4506-4507.
(14) Klunk, W. E.; Debnath, M. L.; Pettegrew, J. W. Biol. Psychiatry 1994,
35, 627.
(15) Klunk, W. E.; Debnath, M. L.; Pettegrew, J. W. Neurobiol. Aging
1995, 16, 541-548.
(16) Styren, S. D.; Hamilton, R. L.; Styren, G. C.; Klunk, W. E. J.
Histochem. Cytochem. 2000, 48, 1223-1232.
(17) Mathis, C. A.; Mahmood, K.; Debnath, M. L.; Klunk, W. E. J. Labelled
Compd. Radiopharm. 1997, 39, S94-S95.
* To whom correspondence should be addressed. E-mail: kunghf@sunmac.
spect.upenn.edu.
(18) Lorenzo, A.; Yankner, B. A. Proc. Natl. Acad. Sci. U.S.A. 1994, 91,
12243-12247.
† Departments of Radiology.
(19) Zhen, W.; Han, H.; Anguiano, M.; Lemere, C. A.; Cho, C. G.;
Lansbury, P. T., Jr. J. Med. Chem. 1999, 42, 2805-2815.
(20) Dezutter, N. A.; De Groot, T. J.; Busson, R. H.; Janssen, G. A.;
Verbruggen, A. M. J. Labelled Compd. Radiopharm. 1999, 42, 309-324.
(21) Dezutter, N. A.; Dom, R. J.; de Groot, T. J.; Bormans, G. M.;
Verbruggen, A. M. Eur. J. Nucl. Med. 1999, 26, 1392-1399.
(22) Agdeppa, E. D.; Kepe, V.; Flores-Torres, S.; Liu, J.; Satyamurthy,
N.; Petric, A.; Small, G. W.; Huang, S. C.; Barrio, J. R. J. Nucl. Med. 2001,
42, S 64P (abstract).
‡ Department of Pharmacology.
(1) Xia, W.; Ray, W. J.; Ostaszewski, B. L.; Rahmati, T.; Kimberly, W.
T.; Wolfe, M. S.; Zhang, J.; Goate, A. M.; Selkoe, D. J. Proc. Natl. Acad.
Sci. U.S.A. 2000, 97, 9299-9304.
(2) Schenk, D.; Barbour, R.; Dunn, W.; Gordon, G.; Grajeda, H.; Guido,
T.; Hu, K.; Huang, J.; Johnson-Wood, K.; Khan, K.; Kholodenko, D.; Lee,
M.; Liao, Z.; Lieberburg, I.; Motter, R.; Mutter, L.; Soriano, F.; Shopp, G.;
Vasquez, N.; Vandevert, C.; Walker, S.; Wogulis, M.; Yednock, T.; Games,
D.; Seubert, P. Nature 1999, 400, 173-177.
(23) Agdeppa, E. D.; Kepe, V.; Shoghi-Jadid, K.; Satyamurthy, N.; Small,
G. W.; Petric, A.; Vinters, H. V.; Huang, S. C.; Barrio, J. R. J. Nucl. Med.
2001, 42, 65P (abstract).
(3) Schenk, D. B.; Seubert, P.; Lieberburg, I.; Wallace, J. Arch. Neurol.
2000, 57, 934-936.
(4) Shearman, M. S.; Beher, D.; Clarke, E. E.; Lewis, H. D.; Harrison, T.;
Hunt, P.; Nadin, A.; Smith, A. L.; Stevenson, G.; Castro, J. L. Biochemistry
2000, 39, 8698-8704.
(24) Agdeppa, E. D.; Kepe, V.; Liu, J.; Shoghi-Jadid, K.; Satyamurthy,
N.; Small, G. W.; Petric, A.; Vinters, H. V.; Huang, S. C.; Barrio, J. R. J.
Labelled Compd. Radiopharm. 2001, 44, S242-S244.
(25) Mathis, C. A.; Holt, D. P.; Wang, Y.; Debnath, M. L.; Bacskai, B. J.;
Hyman, B. T.; Klunk, W. E. J. Nucl. Med. 2001, 42, 252P (abstract).
(26) Mathis, C. A.; Holt, D. P.; Wang, G.-F.; Debnath, M. L.; Klunk, W.
E. J. Labelled Compd. Radiopharm. 2001, 44, S26-S28.
(27) Klunk, W. E.; Wang, Y.; Huang, G.-f.; Debnath, M. L.; Holt, D. P.;
Mathis, C. A. Life Sci. 2001, 69, 1471-1484.
(28) Zhuang, Z.-P.; Kung, M.-P.; Hou, C.; Skovronsky, D.; Gur, T. L.;
Trojanowski, J. Q.; Lee, V. M.-Y.; Kung, H. F. J. Med. Chem. 2001, 44,
1905-1914.
(29) Skovronsky, D.; Zhang, B.; Kung, M.-P.; Kung, H. F.; Trojanowski,
J. Q.; Lee, V. M.-Y. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 7609-7614.
(5) Ghosh, A. K.; Shin, D.; Downs, D.; Koelsch, G.; Lin, X.; Ermolieff,
J.; Tang, J. J. Am. Chem. Soc. 2000, 122, 3522-3523.
(6) Skovronsky, D. M.; Lee, V. M. Trends Pharmacol. Sci. 2000, 21, 161-
163.
(7) Moore, C. L.; Leatherwood, D. D.; Diehl, T. S.; Selkoe, D. J.; Wolfe,
M. S. J. Med. Chem. 2000, 43, 3434-3442.
(8) Selkoe, D. J. J. Am. Med. Assoc. 2000, 283, 1615-1617.
(9) Wolfe, M. S.; Citron, M.; Diehl, T. S.; Xia, W.; Donkor, I. O.; Selkoe,
D. J. J. Med. Chem. 1998, 41, 6-9.
(10) Boss, M. A. Biochim. Biophys. Acta 2000, 1502, 188-200.
(11) Selkoe, D. J. Nature Biotechnol. 2000, 18, 823-824.
10.1021/ja0167147 CCC: $20.00 © 2001 American Chemical Society
Published on Web 11/21/2001