Scheme 1a
Scheme 2a
a Reagents and conditions: (i) DIBALH, CH2Cl2, -78 °C, 98%;
(ii) (+)-(Ipc)2BOMe, CH2dCHCH2MgBr, Et2O, -100 °C, 84%,
er > 20:1; (iii) TBSOTf, 2,6-lutidine, CH2Cl2, rt, 99%; (iv) OsO4
(cat.), NaIO4, H2O-THF, 70%; (v) (+)-(Ipc)2BOMe, CH2d
CHCH2MgBr, Et2O, -100 °C, 66%, dr 12:1; (vi) TBDPSOTf, 2,6-
lutidine, CH2Cl2, rt, 89%; (vii) HCl (3 N), THF-H2O, 95%.
terminal alkene to yield 8. Oxidative cleavage of this diol
furnished 9, and asymmetric crotylation of the resultant
aldehyde with the reagent enantiomeric with that used on 5
produced a pair of diastereomeric alcohols in the ratio 6:1.
These were separated chromatographically, and the major
diastereomer 10 was converted to its triisopropylsilyl (TIPS)
ether 11. Conventional methods for cleaving the PMB ether
from 11 were thwarted by side reactions; DDQ, for example,
yielded the R,â unsaturated ketone resulting from oxidation
of the allylic alcohol after PMB cleavage, whereas reductive
methods invariably led to saturation of one or both double
bonds. Fortunately, a method by Sauve´11 employing a mild
Lewis acid in the presence of ethanethiol proved highly
effective for the selective unmasking of the PMB ether of
11. This led to 12, our precursor to the ring C tetrahydropyran
moiety of 1. Conditions for successful intramolecular alkoxy
carbonylation of 11 required considerable experimentation.
Only palladium(II) acetate was effective in mediating the
reaction, and it was necessary to include either acetonitrile
a Reagents and conditions: (i) DIBALH, -78 °C, 3 h, 69%; (ii)
Ph3PdC(CH3)CHO (4), C6H6, ∆, 20 h, 93%; (iii) trans-CH3CHd
CHCH3, t-BuOK, n-BuLi, THF, then (+)-(Ipc)2BOMe, THF, -70
°C, 6 h; H2O2, NaHCO3, rt, 15 h, 67%, dr >96:4, er >96:4; (iv)
NaH, THF, ∆, 40 min, then PMBCl, n-Bu4NI, ∆, 6 h, 89%; (v)
OsO4 (cat.), NMO, THF-H2O, rt, 10 h, 84%; (vi) NaIO4, H2O-
THF, rt, 30 min, 98%; (vii) trans-CH3CHdCHCH3, t-BuOK,
n-BuLi, THF, then (-)-(Ipc)2BOMe; HOCH2CH2NH2, MeOH, rt,
3 h, 53%, dr 6:1; (viii) TIPSOTf, 2,6-lutidine, CH2Cl2, rt, 2 h, 99%;
(ix) AlCl3, EtSH, CH2Cl2, -20 f -4 °C, 3.5 h, 78%; (x) Pd(OAc)2
(3 equiv), CO, MeOH-MeCN, 70 h, 86%; (xi) LiAlH4, Et2O, 0
°C, 3 h, 79%; (xii) Dess-Martin periodinane, CH2Cl2, rt, 3 h, 85%.
phosphorane 49 to give (E) R,â-unsaturated aldehyde 5
(Scheme 1). Carefully optimized asymmetric crotyl addition
to 5 under Brown’s conditions10 produced homoallylic
(7) For other synthetic studies on phorboxazoles, see: (a) Ye, T.;
Pattenden, G. Tetrahedron Lett. 1998, 39, 319. (b) Pattenden, G.; Plowright,
A. T.; Tornos, J. A.; Ye, T. Tetrahedron Lett. 1998, 39, 6099. (c) Paterson,
I.; Arnott, E. A. Tetrahedron Lett. 1998, 39, 7185. (d) Wolbers, P.;
Hoffmann, H. M. R. Tetrahedron 1999, 55, 1905. (e) Misske, A. M.;
Hoffmann, H. M. R. Tetrahedron 1999, 55, 4315. (f) Williams, D. R.; Clark,
M. P.; Berliner, M. A. Tetrahedron Lett. 1999, 40, 2287. (g) Williams, D.
R.; Clark, M. P. Tetrahedron Lett. 1999, 40, 2291. (h) Wolbers, P.; Hoffman,
H. M. R. Synthsis 1999, 5, 797. (i) Evans, D. A.; Cee, V. J.; Smith, T. E.;
Santiago, K. J. Org. Lett. 1999, 1, 87. (j) Wolbers, P.; Misske, A. M.;
Hoffmann, H. M. R. Tetrahedron Lett. 1999, 40, 4527. (k) Wolbers, P.;
Hoffmann, H. M. R.; Sassee, F. Synlett 1999, 11, 1808. (l) Schaus, J. V.;
Panek, J. S. Org. Lett. 2000, 2, 469. (m) Pattenden, G.; Plowright, A. T.
Tetrahedron Lett. 2000, 41, 983. (n) Rychnovsky, S. D.; Thomas, C. R.
Org. Lett. 2000, 2, 1217. (o) Williams, D. R.; Clark, M. P.; Emde, U.;
Berliner, M. A. Org. Lett. 2000, 2, 3023. (p) Greer, P. B.; Donaldson, W.
A. Tetrahedron Lett. 2000, 41, 3081.
1
alcohol 6 as a single anti diastereomer according to H and
13C NMR. The 19F NMR spectrum of the Mosher ester of 6
indicated that the parent alcohol was obtained enantiomeri-
cally pure within the limits of the NMR measurement if the
crotylation was carried out within a narrow temperature range
around -70 °C. Etherification of 6 with p-methoxybenzyl
(PMB) chloride in the presence of tetra-n-butylammonium
iodide afforded 7, which was selectively osmylated at the
(5) For total syntheses of phorboxazole A, see: (a) Forsyth, C. J.; Ahmed,
F.; Cink, R. D.; Lee, C. S. J. Am. Chem. Soc. 1998, 120, 5597. (b) Smith,
A. B., III; Verhoest, P. R.; Minbiole, K. P.; Schelhaas, M. J. Am. Chem.
Soc. 2001, 123, 4834.
(6) For the total synthesis of phorboxazole B, see: (a) Evans, D. A.;
Fitch, D. M. Angew. Chem., Int. Ed. 2000, 39, 2536. (b) Evans, D. A.;
Smith, T. E.; Cee, V. J. J. Am. Chem. Soc. 2000, 122, 10033.
(8) (a) Cornforth, J. W.; Cornforth, R. H. J. Chem. Soc. 1947, 96. (b)
White, J. D.; Kranemann, C. L.; Kuntiyong, P. Org. Synth., in press.
(9) Boger, D. L.; Curran, T. T. J. Org. Chem. 1992, 57, 2235.
(10) Brown, H. C.; Bhat, K. S.; J. Am. Chem. Soc. 1986, 108, 5919.
(11) Bouside, A.; Sauve´, G. Synlett 1997, 9, 1153.
4004
Org. Lett., Vol. 3, No. 25, 2001