6274
A. L. P. Candéa et al. / Bioorg. Med. Chem. Lett. 19 (2009) 6272–6274
Table 2
bacterial activity evaluation and twelve derivatives (3a–c, 3e–g,
3i–j, 3m–o and 3s) exhibited MIC between 12.5 and 2.5 g/mL.
Therefore, these compounds were selected to evaluation of their
Data of the cellular viability for a macrophage cell line J774 (ATCC TIB-67TM) by
Mosmans´s assay
l
Compound
% Cell viability/dose (lg/mL)
´
cytotoxicities by Mosmanss assay with non-infected and BCG-in-
fected macrophages. Among these derivatives, only 3c, 3f, 3i and
3o were not cytotoxic to host cells in the effective concentrations
to inhibit the growth M. tuberculosis. Furthermore, the compounds
1
10
100
3a
3b
3c
3e
3f
3g
3i
3j
3l
3m
3n
3o
83
7
5
100
60
100
5
100
97
5
4
4
100
4
93
3
6
96
3
91
3
97
88
3
3
2
100
4
82
100
100
88
100
77
100
100
86
100
87
3f, 3i and 3o exhibited a significant activity (2.5
pared with first line drugs such as ethambutol (MIC = 3.12
l
g/mL) when com-
g/mL)
l
and could be considered a good start point to find new lead com-
pounds in the fight against multidrug-resistant tuberculosis.
References and notes
3. Musiol, R.; Jampilek, J.; Buchta, V.; Silva, L.; Niedbala, H.; Podeszwa, B.; Palka,
A.; Majerz-Maniecka, K.; Oleksyn, B.; Polanski, J. Bioorg. Med. Chem. 2006, 14,
3592.
100
89
100
3s
Ethambutol
4. Diacon, A. H.; Pym, A.; Grobusch, M.; Patientia, R.; Rustomjee, R.; Page-Shipp, L.,
et al N. Eng. J. Med. 2009, 360, 2397.
5. De Souza, M. V. N.; Pais, K. C.; Kaiser, C. R.; Peralta, M. A.; Ferreira, M. L.;
Lourenço, M. C. S. Bioorg. Med. Chem. 2009, 17, 1474.
Table 3
Data of the cellular viability for a macrophage cell line J774 infected (ATCC TIB-67TM
)
6. Rollas, S.; Küçükgüzel, Sß. G. Molecules 2007, 12, 1910.
with BCG by Mosmans’s assay
7. Junior, I. N.; Lourenço, M. C. S.; Henriques, M. G. M. O.; Ferreira, B.; Vasconcelos,
T. R. A.; Peralta, M. A.; De Oliveira, P. S. M.; Wardell, S. M. S. V.; De Souza, M. V.
N. Lett. Drug Des. Discovery 2005, 2, 563.
8. Wardell, S. M. S. V.; De Souza, M. V. N.; Wardell, J. L.; Low, J. N.; Glidewell, C.
Acta Crystallogr., Sect. B: Struct. Sci. 2007, 63, 879.
Compound
% Cell viability/dose (lg/mL)
1
10
100
3c
3f
3i
3o
100
100
100
100
92
100
100
100
100
88
90
85
93
88
85
9. Carvalho, S. A.; da Silva, E. F.; de Souza, M. V. N.; Lourenço, M. C. S.; Vicente, F. R.
Bioorg. Med. Chem. Lett. 2008, 18, 538.
10. Lourenço, M. C. S.; Ferreira, M. L.; De Souza, M. V. N.; Peralta, M. A.;
Vasconcelos, T. R. A.; Henriques, M. G. M. O. Eur. J. Med. Chem. 2008, 43, 1344.
11. Ferreira, M. L.; Cardoso, L. N. F.; Gonçalves, R. S. B.; Da Silva, E. T.; Lourenço, M.
C. S.; Vicente, F. R.; De Souza, M. V. N. Lett. Drug. Des. Discovery 2008, 5, 137.
12. Lourenço, M. C.; De Souza, M. V. N.; Pinheiro, A. C.; Ferreira, M. L.; Gonçalves, R.
S. B.; Nogueira, T. C. M.; Peralta, M. A. ARKIVOC 2007, XV, 181.
13. Al-Sha’alan, N. H. Molecules 2007, 12, 1080.
14. General procedure for the synthesis of 7-chloro-4-quinolinylhydrazones derivatives
3a–u: The compounds 3a–u were obtained by reaction between compound 2
(0.2 g, 1.03 mmol) and the appropriate benzaldehyde (1.24 mmol) in ethanol
(5 mL). After stirring for 4–24 h at room temperature, the resulting mixture
was concentrated under reduced pressure and the residue purified by washing
with cold Et2O (3 Â 10 ml), leading to the pure derivatives (3a–u) as solids in
64–91% yields.
15. Pellerano, C.; Savini, L.; Fiorini, I. Atti Accad. Fisiocritic Siena 1976, 8, 43.
16. El-Behery, M.; El-Twigry, H. Spectrochim. Acta, Part A 2007, 66, 28.
17. Thomas, J.; Berkoff, C. E.; Flagg, W. B.; Gallo, J. J.; Haff, R. F.; Pinto, C. A.;
Pellerano, C.; Savini, L. J. Med. Chem. 1975, 18, 245.
18. Canetti, J.; Rist, E.; Grosset, R. Pneumology 1963, 27, 217.
19. Franzblau, S. G.; Witzig, R. S.; McLaughlin, J. C.; Torres, P.; Madico, G.;
Hernandez, A.; Degnan, M. T.; Cook, M. B.; Quenzer, V. K.; Ferguson, R. M.;
Gilman, R. H. J. Clin. Microbiol. 1998, 36, 362.
Ethambutol
tetrazolium bromide; Merck) microcultured tetrazolium assay.22,23
The results were represented as percentage cell viability (Table 2).
This table shows that the compounds 3b, 3c, 3d, 3i and 3o did
not kill more than 5% of the host cells in the minimum concentra-
tion tested. Hence, these compounds were selected to be tested on
macrophages infected with Mycobaterium bovis Bacillus Calmette-
Guerin (BCG) (Table 3).
The purpose of this test is to evaluate the action of these com-
pounds against macrophages that show their metabolism changed
after infection. Then, all the derivatives 3c, 3d, 3i and 3o were not
cytotoxic once they did not kill more than 5% of the cells at the
minimum concentration tested. It is important be mentioned that
theses compounds are less cytotoxic towards normal cells than the
20. Vanitha, J. D.; Paramasivan, C. N. Mycobacteriology 2004, 49, 179.
21. Reis, R. S.; Neves, I., Jr.; Lourenço, S. L. S.; Fonseca, L. S.; Lourenço, M. C. S. J. Clin.
Microbiol. 2004, 42, 2247.
22. Souza, M. C.; Siani, A. C.; Ramos, M. F. S., Jr.; Limas, O. M.; Henrique, M. G. M. O.
Pharmazie 2003, 58, 582.
first line drug ethambutol in 1 and 10 lg/mL.
In conclusion, the synthesis of twenty-one 7-chloro-4-quin-
olinylhydrazones derivatives 3a–u was performed in good yields
(64–91%). Among them eleven are new compounds (3d–f, 3k–n,
3p and 3r–t). All these compounds were submitted to antimyco-
23. Carvalho, M. V.; Monteiro, C. P.; Siani, A. C.; Valente, L. M. M.; Henriques, M. G.
M. O. Inflammopharmacology 2006, 14, 48.