A.J.Pearson, Y.Kwak / Tetrahedron Letters 46 (2005) 3407–3410
3409
Ph
Ph
OH
Ph
OH
O
H
N
N
N
no reaction
ð3Þ
90%
7
8
9 (1.6:1)
Wiley and Sons: New York; (b) Attygalle, A. B.;
Morgan, E. D. Chem.Soc.Rev.
Michael, J. P. Nat.Prod.Rep.
stabilities of the cations 5, though we were not able to
completely suppress the undesired pathway.
1984, 13, 245; (c)
2001, 18, 520–542; (d)
Garraffo, H. M.; Jain, P.; Spande, T. F.; Daly, J. W.;
Jones, T. H.; Smith, L. J.; Zottig, V. E. J.Nat.Prod.
2001, 64, 421–427.
Further evidence for the intermediacy of an iminium
intermediate comes from studies on the cyclization of re-
lated piperidine and azacycloheptane derivatives (Eq. 3).
Thus, the six-membered ring derivative 7 was completely
resistant to oxidation under the normal conditions,
while 8 was converted to 9 in excellent yield (as a 1.6:1
mixture of diastereomers, which are calculated to have
similar MM2 energies). Both mechanistic studies and
synthetic applications for oxidative functionalization
of tertiary amines have been described in the literature,15
and it is known that the rate constant for oxidation of a
five- or seven-membered ring amine is 5 and 13 times
greater, respectively, than that of the six-membered ring
system.16 This has been attributed to the energy differ-
ence associated with planarization of the nitrogen in
these ring systems during conversion of the amine to
an iminium cation. Our results are therefore consistent
with this mechanism.
2. (a) Huryn, D. M. In Comprehensive Organic Synthesis;
Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991;
Vol. 1, p64; (b) Whitesell, J. K. Chem.Rev. 1989, 89,
1581–1590; (c) Whitesell, J. K. Acc.Chem.Res. 1985, 18,
280–284; (d) Sprott, K. T.; Corey, E. J. Org.Lett. 2003, 5,
2465–2467.
3. (a) Lutete, L. M.; Kadota, I.; Yamamoto, Y. J.Am.
Chem.Soc. 2004, 126, 1622–1623; (b) Jahn, U.; Muller,
¨
M.; Aussieker, S. J.Am.Chem.Soc. 2000, 122, 5212–5213;
(c) Trost, B. M.; Pinkerton, A. B.; Kremzow, D. J.Am.
Chem.Soc. 2000, 122, 12007–12008; (d) Marks, T. J.;
Hong, S. J.Am.Chem.Soc.
2002, 124, 7886–7887; (e)
Burgess, L. E.; Meyers, A. I. J.Am.Chem.Soc. 1991, 113,
9858–9859.
4. (a) Husson, H.-P.; Royer, J. Chem.Soc.Rev. 1999, 28,
383–394; (b) Katritzky, A. R.; Cui, X.-L.; Yang, B.; Steel,
´
P. J. J.Org.Chem. 1999, 64, 1979–1985; (c) Andres, J. M.;
Herraiz-Sierra, I.; Pedrosa, R.; Perez-Encabo, A. Eur.
´
´
J.Org.Chem. 2000, 1719–1726.
5. (a) Takahashi, H.; Niwa, H.; Higashiyama, K. Heterocy-
cles 1988, 27, 2099–2102; (b) Wu, M.-J.; Pridgen, L. N. J.
In summary, we have discovered a novel oxidizing
system that allows the stereoselective conversion of N-
hydroxyethylpyrrolidines to oxazolopyrrolidines. These
products are known to have useful chemistry that allows
their applications in synthesis of substituted pyrrolidine
derivatives. Future efforts in our laboratory will be
focused on exploring the chemistry of these systems, as
well as other oxidation reactions promoted by the
Me3NO/iron carbonyl system.17
Org.Chem.
Alvarez, M. A.; Andres, C.; Gonzalez, A.; Pedrosa, R.
1991, 56, 1340–1344; (c) Alberola, A.;
´
Synthesis 1990, 1057–1058; (d) Andres, C.; Gonzalez, A.;
´
´
Pedrosa, R.; Perez-Encabo, A. Tetrahedron Lett. 1992,
´
´
33(20), 2895–2898; (e) Muralidharan, K. R.; Mokhal-
lalati, M. K.; Pridgen, L. N. Tetrahedron Lett. 1994, 35,
7489–7492.
6. (a) Hoppe, I.; Hoppe, D.; Wolff, C.; Egert, E.; Herbst, R.
1989, 28, 67–69; (b)
Angew.Chem, . Int.Ed.Engl.
Scolastico, C. Pure Appl.Chem. 1988, 60(11), 1689–1698;
(c) Adam, W.; Peters, K.; Peters, E.-M.; Schambony, S. B.
J.Am.Chem.Soc. 2000, 122, 7610–7611; (d) Adam, W.;
Schambony, S. B. Org.Lett. 2001, 3, 79–82.
Acknowledgements
We are grateful to the National Science Foundation for
financial support of this research.
7. (a) Mo¨hrle, H.; Kamper, C. Die Pharm. 1983, 38, 512–520;
(b) Leonard, N. J.; Musker, W. K. J.Am.Chem.Soc.
1960, 82, 5148–5155; (c) Pandey, G.; Kumaraswamy, G.
Tetrahedron Lett. 1988, 29, 4153–4156.
Supplementary data
8. Shvo, Y.; Hazum, E. Chem.Commun.
337.
9. (a) Eekhof, J. H.; Hogeveen, H.; Kellogg, R. M. Chem.
Commun. 1976, 657; (b) Elzinga, J.; Hogeveen, H. Chem.
Commun. 1977, 705–706.
10. Clifford, A. F.; Mukherjee, A. K. Inorg.Chem. 1963, 2,
151–153.
11. (a) Pearson, A. J. Iron Compounds in Organic Synthesis;
Academic: San Diego, 1994, Chapter 4; (b) Kno¨lker, H.-J.;
Ahrens, B.; Gonser, P.; Heininger, M.; Jones, P. G.
Tetrahedron 2000, 56, 2259–2271.
1974, 336–
Supplementary data associated with this article can be
tion of compounds 1, as well as the oxidation of 1 to
2, and spectroscopic data of all new compounds. The
supplementary data is available online with the paper
in ScienceDirect.
References and notes
12. Katsuki, T.; Sharpless, K. B. J.Am.Chem.Soc. 1980, 102,
5974–5976.
1. (a) Elbein, A. D.; Molyneux, R. In Alkaloids; Chemical
and Biological Perspectives; Pelletier, S. W., Ed.; John
13. Franzen, V.; Otto, S. Chem.Ber.
1363.
1961, 94, 1360–