Please do not adjust margins
Organic & Biomolecular Chemistry
Page 4 of 6
ARTICLE
Journal Name
Conflicts of interest
DOI: 10.1039/D0OB01963A
Table 4. Synthesis of C2-substituted 3,4-dihydroquinazolines.
NTs
There are no conflicts of interest to declare.
PTSA
NH
R1
NH2
NH2
Thioimidates
THF, rt, 2~3 h
N
H
NH2
R1
rt, 2~3 h
N
5a-5f
6a-6f
Acknowledgements
OMe
NH
NH
NH
This work is supported by grants from the Ministry of Science
and Technology, Taiwan (Grant MOST 108-2113-M-005-019-
and 109-2113-M-005-004-). We also acknowledge the support
from the National Chung Hsing University.
N
N
N
a,b
a,b
a,b
6a
6b
6c
, 94%
, 90%
, 88%
NH
O
NH
NH
N
N
N
a,b
a,b
a,b
6e
, 94%
6d
6f
, 52%
, 93%
Notes and references
1
For a review, see: T. S. Jagodzinski, Chem. Rev., 2003, 103,
197. For some recent paper, see: (a) J. Schleiss, P. Rollin, A.
Tatibouet, Angew. Chem. Int. Ed., 2010, 49, 577; (b) N. R. Perl,
N. D. Ide, S. Prajapati, H. H. Perfect, S. G. Duron, D. Y. Gin,
J. Am. Chem. Soc., 2010, 132, 1802; (c) Y. Karibe, H. Kusama,
N. Iwasawa, Angew. Chem. Int. Ed., 2012, 51, 6214; (d) A. F.
G. Goldberg, N. R. O’Connor, R. A. Craig II, B. M. Stoltz,
Org. Lett., 2012, 14, 5314; (e) Z. Guan, M. Nieger, A. Schmidt,
Eur. J. Org. Chem., 2015, 4710; (f) K. Shvydenko, K.
Nazarenko, T. Shvydenko, Y. Vlasenko, A. Tolmachev, A.
Kostyuk, Tetrahedron, 2015, 71, 7567; (g) A. H. Vahabi, A.
Alizadeh, H. R. Khavasi, A. Bazgir, Eur. J. Org. Chem., 2017,
5347; (h) M. Feng, P. Yang, G. Yang, W. Chen, Z. Chai, J.
Org. Chem., 2018, 83, 174; (i) P. D. Parker, B. C. Lemercier,
J. G. Pierce, J. Org. Chem., 2018, 83, 12.
(a) F. Thuanu, S. Kojima, G. Hirai, K. Oonuma, A. Tsuchiya,
T. Uchida, T. Tsuchimoto, M. Sodeoka, Bioorg. Med. Chem.,
2014, 22, 2771; (b) M. Feng, B. Tang, S. H. Liang, X. Jiang,
Curr. Top. Med. Chem., 2016, 16, 1200.
For a review, see: (a) W.-S. Guo, L.-R. Wen, M. Li, Org.
Biomol. Chem., 2015, 13, 1942; (b) H. Liu, X. Jiang, Chem.
Asian J., 2013, 8, 2546.
Y. Minami, H. Kuniyasu, A. Sanagawa, N. Kambe, Org. Lett.,
2010, 12, 3744.
R. Roger, D. G. Neilson, Chem. Rev., 1961, 61, 179.
T. Livinghouse, R. Smith, J. Chem. Soc. Chem. Commun.,
1983, 210.
K. Maruoka, T. Miyazaki, M. Ando, Y. Matsumura, S. Sakane,
K. Hattori, H. Yamamoto, J. Am. Chem. Soc., 1983, 105, 283.
A. N. Kolontsova, M. N. Ivantsova, M. I. Tokareva, M. A.
Mironov, Mol. Diversity, 2010, 14, 543.
C. G. Saluste, R. Whitby, M. Furber, Tetrahedron Lett., 2001,
42, 6191.
N
Ph
N
a,b,c
7
(3 steps 56%)
a
Condition: Thioimidates (1.0 equiv) and 2-aminobenzylamine (1.2 equiv) in THF
were stirred under nitrogen atmosphere for 2~3 h, then added p-toluenesulfonic
acid monohydrate (2.0 equiv) to the reaction mixture. Isolated yield. After
getting crude 6a, an acid was removed through extraction, then the crude 6a in
THF was added iodobenzenediacetate (3 equiv) at rt for 3 h.
b
c
On the basis of literature reports,14,15,19,34 a proposed reaction
mechanism is shown in Scheme 3. The reaction can be
rationalized as being initiated by the copper(I)-catalyzed [3+2]
cycloaddition of sulfonyl azide and alkynes 1, followed by the
release of N2 to form the intermediate ketenimine B (via A).
Then, the nucleophilic thiols 2 attacked the electron deficient
central carbon of ketenimine B lead to the construction of N-
sulfonylthioimidates 3 or 4.
2
3
4
Cu
R
Ts
1
R
H
R
Cu(I)
-Cu(I), -N2
N H
C
N
5
6
N
N
+
DMAP
Ts
N
B
N
Ts
N N N
A
R' SH
2
7
8
9
Ts
N
NTs
S
R
R'
R
R'
S
H
C
3
4
or
Scheme 3. Possible mechanism route to N-sulfonylthioimidates.
10 J. Y. Lee, Y.-T. Hong, S. Kim, Angew. Chem. Int. Ed., 2006,
45, 6182.
11 K. Kucinski, G. Hreczycho, Eur. J. Org. Chem., 2016, 4577.
12 S. Otsuka, K. Nogi, H. Yorimitsu, Angew. Chem. Int. Ed.,
2018, 57, 6653.
Conclusions
In summary, N-sulfonylthioimidates can efficiently be prepared
through the one-pot three-component reaction of terminal
alkynes, TsN3, and freshly prepared thiols under the action of a
copper(I) catalyst in the presence of DMAP as the base. The
developed method provides advantages such as efficiency, a
wide substrate scope, considerably mild reaction conditions, and
high tolerance toward diverse functional groups. Moreover, the
method can be manipulated to obtain a satisfactory yield of the
13 P. Villo, G. Kervefors, B. Olofsson, Chem. Commun., 2018,
54, 8810.
14 For some reviews, see: (a) E. J. Yoo, S. Chang, Curr. Org.
Chem., 2009, 13, 1766; (b) S. H. Kim, S. H. Park, J. H. Choi,
S. Chang, Chem. Asian J., 2011, 6, 2618; (c) P. Lu, Y. Wang,
Chem. Soc. Rev., 2012, 41, 5687.
15 S. H. Cho, E. J. Yoo, I. Bae, S. Chang, J. Am. Chem. Soc.,
2005, 127, 16046.
16 I. Bae, H. Han, S. Chang, J. Am. Chem. Soc., 2005, 127, 2038.
17 E. J. Yoo, I. Bae, S. H. Cho, H. Han, S. Chang, Org. Lett.,
2006, 8, 1347.
18 G. Murugavel, T. Punniyamurthy, Org. Lett., 2013, 15, 3828.
19 G. Cheng, X. Cui, Org. Lett., 2013, 15, 1480.
20 B. Jiang, X.-J. Tu, X. Wang, S.-J. Tu, G. Li, Org. Lett., 2014,
16, 3656.
crucial
pharmacophores
of
C2-substituted
3,4-
dihydroquinazolines by using a range of substrates under
ambient reaction conditions.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins