204
Helvetica Chimica Acta – Vol. 94 (2011)
1
(¼CH). H-NMR: 2.72 (dd, J ¼ 16.2, 7.2, HaꢀC(5)); 2.89 (dd, J ¼ 16.2, 5.7, HbꢀC(5)); 4.87 (ddd, J ¼ 7.2,
5.7, 2.4, HꢀC(6)); 7.66 – 7.72 (m, 1 arom. H); 7.79 – 7.82 (m, 1 arom. H); 8.14 (s, HꢀN(1)); 8.14 – 8.21 (m, 2
arom. H); 10.26 (s, HꢀN(3)). Anal. calc. for C10H9N3O4 (235.20): C 51.07, H 3.86, N 17.87; found: C 50.89,
H 4.03, N 18.01.
6-(4-Chlorophenyl)-5,6-dihydropyrimidine-2,4(1H,3H)-dione (4d): Yield: 0.67 g (30%). White solid.
M.p. 249 – 2518 ([16c]: 251 – 2538).
5,6-Dihydro-6-(4-methoxyphenyl)pyrimidine-2,4(1H,3H)-dione (4e): Yield: 0.46 g (21%). White
powder. M.p. 230 – 2318 ([16d]: 2288).
5,6-Dihydro-6-(thiophen-2-yl)pyrimidine-2,4(1H,3H)-dione (4f): Yield: 0.31 g (16%). White crys-
tals. M.p. 242 – 2448 ([16a]: 243 – 2458).
5,6-Dihydro-6-(2-methylpropyl)pyrimidine-2,4(1H,3H)-dione (4g): Yield: 0.15 g (9%). White solid.
M.p. 216 – 2188 ([16e]: 215 – 2178).
3,4,5,6-Tetrahydro-6-phenyl-2-thioxopyrimidin-4(1H)-one (4h): Yield: 0.68 g (33%). White solid.
M.p. 235 – 2378 ([16f]: 2388).
(ꢁ)-(2RS,6SR)-2,3,5,6-Tetrahydro-2-methyl-4H-2,6-methano-1,3-benzoxazocin-4-one (5). a) This
compound was prepared from salicylaldehyde (1.1 ml, 10 mmol), Meldrumꢀs acid (3.0 g, 21 mmol),
and urea (0.6 g, 10 mmol) following the above protocol. Yield: 1.37 g (67%). M.p. 258 – 2598 ([6]: 257 –
2588). 1H-NMR: 1.60 (s, Me); 2.02 (ddd, J ¼ 13.2, 1.8, 1.7, HeqꢀC(11)); 2.14 (dd, J ¼ 13.2, 1.8, HaxꢀC(11));
2.26 (br. d, J ¼ 17.4, HeqꢀC(5)); 2.63 (dd, J ¼ 17.4, 4.8, HaxꢀC(5)); 3.18 – 3.20 (m, HꢀC(6)); 6.74 (d, J ¼ 7.8,
arom. HꢀC(10)); 6.89 (t, J ¼ 7.8, arom. HꢀC(8)); 7.13 (t, J ¼ 7.8, arom. HꢀC(9)); 7.18 (d, J ¼ 7.8, arom.
HꢀC(7)); 8.37 (br. s, NH). 13C-NMR: 26.9 (Me); 28.9 (C(6)); 32.1 (C(11)); 40.5 (C(5)); 82.6 (C(O)N);
116.7 (arom. C(10)); 120.7 (arom. C(8)); 125.6 (arom. C(6a)); 128.1 (arom. C(9)); 129.3 (arom. C(7));
151.3 (arom. C(10a)); 170.2 (C(4)¼O). EI-MS: 203 (Mþ).
b) Alternative procedure: a mixture of coumarin-3-carboxylic acid (6; 0.6 g, 3.16 mmol), urea
(0.19 g, 3.16 mmol), and acetone (3 ml) in AcOH (25 ml) was refluxed for 24 h. The solvent was
evaporated, and the oily residue was triturated with EtOH. The crystalline product was filtered off. Yield:
0.52 g (80%). NMR Data are identical to those given above.
REFERENCES
[1] a) H. McNab, Chem. Soc. Rev. 1978, 7, 345; b) B.-C. Chen, Heterocycles 1991, 32, 529; c) J.
´
´
Gerencser, G. Dorman, F. Darvas, QSAR Comb. Sci. 2006, 25, 439; d) A. S. Ivanov, Chem. Soc. Rev.
2008, 37, 789; e) V. V. Lipson, N. Y. Gorobets, Mol. Diversity 2009, 13, 399.
[2] J. Fuhrhop, G. Li, ꢃOrganic Synthesis: Concepts and Methodsꢀ, 3rd ed., Wiley-VCH, Weinheim,
2003, pp. 1 – 6; R. W. Hoffmann, ꢃElements of Synthesis Planningꢀ, Springer Verlag, Berlin-
Heidelberg, 2009, pp. 9 – 15.
[3] D. B. Ramachary, N. S. Chowdari, C. F. Barbas III, Angew. Chem., Int. Ed. 2003, 42, 4233; B. Jiang,
W.-J. Hao, J.-P. Zhang, S.-J. Tu, F. Shi, Org. Biomol. Chem. 2009, 7, 2195.
[4] A. V. Narsaiah, K. Nagaiah, Indian J. Chem., Sect. B 2004, 43, 2482.
[5] a) A. Shaabani, A. Bazgir, Tetrahedron Lett. 2004, 45, 2575; b) A. Shaabani, A. Bazgir, H. R.
Bijanzadeh, Mol. Diversity 2004, 8, 141.
˘
ˇ
[6] J. Svetlꢄk, I. Goljer, F. Turecek, J. Chem. Soc., Perkin Trans. 1 1990, 1315.
´
´
[7] Y. Verdecia, M. Suarez, A. Morales, E. Rodrꢄguez, E. Ochoa, L. Gonzales, N. Martin, M. Quinteiro,
C. Seoane, J. L. Soto, J. Chem. Soc., Perkin Trans. 1 1996, 947.
[8] V. Sarli, S. Huemmer, N. Sunder-Plassmann, T. U. Mayer, A. Giannis, ChemBioChem 2005, 6, 2005;
E. Klein, S. DeBonis, B. Thiede, D. A. Skoufias, F. Kozielski, L. Lebeau, Bioorg. Med. Chem. 2007,
15, 6474.
[9] A. M. Basso, N. A. Bratcher, K. B. Gallagher, M. D. Cowart, C. Zhao, M. Sun, T. A. Esbenshade,
M. E. Brune, G. B. Fox, M. Schmidt, C. A. Collins, A. J. Souers, R. Iyengar, A. Vasudevan, P. R.
Kym, A. A. Hancock, L. E. Rueter, Eur. J. Pharmacol. 2006, 540, 115.
´
[10] S. Wisen, J. Androsavich, C. G. Evans, L. Chang, J. E. Gestwicki, Bioorg. Med. Chem. Lett. 2008, 18,
60.