4
J . Org. Chem., Vol. 67, No. 1, 2002
Gravel et al.
ing,10 thiols11); palladium- or nickel-catalyzed coupling
protocols involving sulfonium salts,12 thioesters,13 or
thioalkynes;14 nickel-catalyzed couplings with allylic
compounds;15 and mercury(II) acetate/lead tetraacetate-
promoted couplings with active methylene compounds.16
The three-component borono-Mannich reaction,17 first
reported by Petasis,17a allows the synthesis of various
R-amino acid and â-amino alcohol derivatives. There are
also a number of useful oxidative ipso-substitution
methodologies for arylboronic acids.18
Many of the reactions described above are amenable
to solid-phase and are thus particularly attractive for
(8) (a) Sakai, M.; Hayashi, H.; Miyaura, N. Organometallics 1997,
16, 4229-4230. (b) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai,
M.; Miyaura, N. J . Am. Chem. Soc. 1998, 120, 5579-5580. (c) Hayashi,
T.; Senda, T.; Takaya, Y.; Ogasawara, M. J . Am. Chem. Soc. 1999,
121, 11591-11592. (d) Sakuma, S.; Sakai, M.; Itooka, R.; Miyaura, N.
J . Org. Chem. 2000, 65, 5951-5955. (e) Hayashi, T.; Senda, T.;
Ogasawara, M. J . Am. Chem. Soc. 2000, 122, 10716-10717.
(9) Lautens, M.; Roy, A.; Fukuoka, K.; Fagnou, K.; Mart´ın-Matute,
B. J . Am. Chem. Soc. 2001, 123, 5358-5359.
F igu r e 1. Immobilization and derivatization of functionalized
boronic acids using N,N-diethanolaminomethyl polystyrene
(DEAM-PS, 1).
(10) (a) Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P.
Tetrahedron Lett. 1998, 39, 2933-2936. (b) Evans, D. A.; Katz, J . L.;
West, T. R. Tetrahedron Lett. 1998, 39, 2937-2940. (c) Lam, P. Y. S.;
Clark, C. G.; Saubern, S.; Adams, J .; Winters, M. P.; Chan, D. M. T.;
Combs, A. Tetrahedron Lett. 1998, 39, 2941-2944. (d) Cundy, D. J .;
Forsyth, S. A. Tetrahedron Lett. 1998, 39, 7979-7982. (e) Combs, A.
P.; Saubern, S.; Rafalski, M.; Lam, P. Y. S. Tetrahedron Lett. 1999,
40, 1623-1626. (f) J ung, M. E.; Lazarova, T. I. J . Org. Chem. 1999,
64, 2976-2977. (g) Mederski, W. W. K. R.; Lefort, M.; Germann, M.;
Kux, D. Tetrahedron 1999, 55, 12757-12760. (h) Collman, J . P.; Zhong,
M. Org. Lett. 2000, 2, 1233-1236. (i) Lam, P. Y. S.; Clark, C. G.;
Saubern, S.; Adams, J .; Averill, K. M.; Chan, D. M. T.; Combs, A.
Synlett 2000, 674-675. (j) Collot, V.; Bovy, P.; Rault, S. Tetrahedron
Lett. 2000, 41, 9053-9057. (k) Petrassi, H. M.; Sharpless, K. B.; Kelly,
J . W. Org. Lett. 2001, 3, 139-142. (l) Simon, J .; Salzbrunn, S.; Surya
Prakash, G. K.; Petasis, N. A.; Olah, G. A. J . Org. Chem. 2001, 66,
633-634. (m) Decicco, C. P.; Song, Y.; Evans, D. A. Org. Lett. 2001, 3,
1029-1032. (n) Collman, J . P.; Zhong, M.; Zeng, L.; Costanzo, S. J .
Org. Chem. 2001, 66, 1528-1531. (o) Lam, P. Y. S.; Vincent, G.; Clark,
C. G.; Deudon, S.; J adhav, P. K. Tetrahedron Lett. 2001, 42, 3415-
3418. (p) Antilla, J . C.; Buchwald, S. L. Org. Lett. 2001, 3, 2077-2079.
(11) Herradura, P. S.; Pendola, K. A.; Guy, R. K. Org. Lett. 2000, 2,
2019-2022.
combinatorial library synthesis. These new types of
synthetic transformations have created a demand for the
commercial availability of a larger number of function-
alized boronic acids. Yet, there are still relatively few
boronic acids on the market.19 The paucity of boronic
acids can be explained by the nonexistence of natural
ones and, in large part, by difficulties associated with the
synthesis and derivatization of even the simplest func-
tionalized ones by solution-phase methods. The isolation
of compounds containing a boronic acid functionality can
prove to be notoriously troublesome as a result of their
amphiphilic character. They exist as water-soluble tet-
rahedral boronate anions at high pH and are thought to
be hydrated at neutral pH20 so that even those bearing
a relatively hydrophobic group can be difficult to extract
quantitatively into organic solvents under standard
aqueous workup procedures. These problems are ampli-
fied when the desired boronic acid-containing compound
comprises other sites with basic or acidic functionalities.
Boronic acids are also typically slow-moving on silica gel
and, consequently, must often be purified by recrystal-
lization. In addition, although arylboronic acids are
relatively stable and can be handled without special
precautions, alkylboronic acids and, to some extent,
alkenylboronic acids are sensitive to oxidation even under
ambient air.21 Some of these problems can be alleviated
by protection of the boronic group as an ester.22 However,
these approaches require additional synthetic operations.
(12) (a) Srogl, J .; Allred, G. D.; Liebeskind, L. S. J . Am. Chem. Soc.
1997, 119, 12376-12377. (b) Zhang, S.; Marshall, D.; Liebeskind, L.
S. J . Org. Chem. 1999, 64, 2796-2804.
(13) (a) Zeysing, B.; Gosch, C.; Terfort, A. Org. Lett. 2000, 2, 1843-
1845. (b) Savarin, C.; Srogl, J .; Liebeskind, L. S. Org. Lett. 2000, 2,
3229-3232. (c) Liebeskind, L. S.; Srogl, J . J . Am. Chem. Soc. 2000,
122, 11260-11261.
(14) Savarin, C.; Srogl, J .; Liebeskind, L. S. Org. Lett. 2001, 3, 91-
93.
(15) (a) Kobayashi, Y.; Ikeda, E. J . Chem. Soc., Chem. Commun.
1994, 1789-1790. (b) Mizojiri, R.; Kobayashi, Y. J . Chem. Soc., Perkin
Trans. 1 1995, 2073-2075. (c) Trost, B. M.; Spagnol, M. D. J . Chem.
Soc., Perkin Trans. 1 1995, 2083-2096.
(16) Morgan, J .; Pinhey, J . T. J . Chem. Soc., Perkin Trans. 1 1990,
715-720.
(17) (a) Petasis, N. A.; Akritopoulou, I. Tetrahedron Lett. 1993, 34,
583-586. (b) Harwood, L. M.; Currie, G. S.; Drew, M. G. B.; Luke, R.
W. A. Chem. Commun. 1996, 1953-1954. (c) Petasis, N. A.; Zavialov,
I. A. J . Am. Chem. Soc. 1997, 119, 445-446. (d) Petasis, N. A.; Zavialov,
I. A. J . Am. Chem. Soc. 1998, 120, 11798-11799. (e) Hansen, T. K.;
Schlienger, N.; Hansen, B. S.; Andersen, P. H.; Bryce, M. R. Tetrahe-
dron Lett. 1999, 40, 3651-3654. (f) Batey, R. A.; MacKay, B.;
Santhakumar, V. J . Am. Chem. Soc. 1999, 121, 5075-5076. (g)
Schlienger, N.; Bryce, M. R.; Hansen, T. K. Tetrahedron Lett. 2000,
41, 1303-1305. (h) Klopfenstein, S. R.; Chen, J . J .; Golebiowski, A.;
Li, M.; Peng, S. X.; Shao, X. Tetrahedron Lett. 2000, 41, 4835-4839.
(i) Golebiowski, A.; Klopfenstein, S. R.; Chen, J . J .; Shao, X. Tetrahe-
dron Lett. 2000, 41, 4841-4844. (j) Petasis, N. A.; Patel, Z. D.
Tetrahedron Lett. 2000, 41, 9607-9611. (k) Prakash, G. K. S.; Mandal,
M.; Schweizer, S.; Petasis, N. A.; Olah, G. A. Org. Lett. 2000, 2, 3173-
3176. (l) Wang, Q.; Finn, M. G. Org. Lett. 2000, 2, 4063-4066. (m)
Schlienger, N.; Bryce, M. R.; Hansen, T. K. Tetrahedron 2000, 56,
10023-10030. (n) Batey, R. A.; MacKay, D. B. Tetrahedron Lett. 2000,
41, 9935-9938. (o) Currie, G. S.; Drew, M. G. B.; Harwood, L. M.;
Hughes, D. J .; Luke, R. W. A.; Vickers, R. J . J . Chem. Soc., Perkin
Trans. 1 2000, 2982-2990. (p) Thompson, K. A.; Hall, D. G. Chem.
Commun. 2000, 2379-2380. (q) Petasis, N. A.; Boral, S. Tetrahedron
Lett. 2001, 42, 539-542. (r) Berre´e, F.; Debache, A.; Marsac, Y.;
Carboni, B. Tetrahedron Lett. 2001, 42, 3591-3594.
(18) Halogenation: (a) Thiebes, C.; Prakash, G. K. S.; Petasis, N.
A.; Olah, G. A. Synlett 1998, 141-142. Nitration: (b) Salzbrunn, S.;
Simon, J .; Prakash, G. K. S.; Petasis, N. A.; Olah, G. A. Synlett 2000,
1485. Oxidation to phenols: (c) Hawthorne, M. F. J . Org. Chem. 1957,
22, 1001. (d) Webb, K. S.; Levy, D. Tetrahedron Lett. 1995, 36, 5117.
Azidation: (e) Huber, M.-L.; Pinhey, J . T. J . Chem. Soc., Perkin Trans.
1 1990, 715-720.
(19) There are less than 150 different boronic acids (from a compila-
tion of the suppliers Aldrich, Lancaster, Frontier Scientific, and Combi-
Blocks), as compared to thousands of carboxylic acids and several
hundreds of different alcohols, just to name a few.
(20) Lorand, J . P.; Edwards, J . O. J . Org. Chem. 1959, 24, 769-
774.
(21) (a) Snyder, H. R.; Kuck, J . A.; J ohnson, J . R. J . Am. Chem. Soc.
1938, 60, 105-111. (b) Matteson, D. S. J . Am. Chem. Soc. 1960, 82,
4228-4233.
(22) Matteson, D. S. Stereodirected Synthesis with Organoboranes;
Springer: Berlin and Heidelberg, Germany, 1995; Section 1.4.2, p 17.