Synthesis of (E)- and (Z)-R-Fluoro-R,â-unsaturated Esters
tain R,â-unsaturated amide moieties have been shown
to be irreversible inhibitors of guinea pig liver trans-
glutaminase (TGase)10 or potential ACE (angiotensin
converting enzyme) inhibitors.11 Due to the introduction
of fluorine neighboring the amide structure unit, R-fluoro-
R,â-unsaturated amides have shown very important
applications in medicinal chemistry: for example, R-fluoro-
R,â-unsaturated amide derivatives have been studied as
potential anticonvulsants,12 glucagon antagonists,13 CCR5
receptor modulators,14 IMPDH enzyme inhibitors,15 and
retinoid metabolism inhibitors.16 However, to the best of
our knowledge, no systematic synthetic method for
R-fluoro-R,â-unsaturated amides has been reported, al-
though there are some methods describing the synthesis
of nonfluorinated R,â-unsaturated amides.17,18 The lack
of a reliable, convenient, and stereospecific synthetic
method of R-fluoro-R,â-unsaturated amides has inhibited
further medicinal chemistry studies of this category of
compounds.
A variety of synthetic methods have been reported on
the stereoselective synthesis of (Z)-R-fluoro-R,â-unsatur-
ated esters. Some examples include Cr(II)-mediated
olefination of aldehydes with trifluoroacetates,19 Pom-
melet’s method by Durst reaction from 3-hydroxy-2-
fluoro-2-sulfinyl esters,20 the tandem reduction-olefina-
tion of R-fluoro-R-acylphosphonoesters,21 the Wittig
reaction between aldehydes and trifluorinated ylides,22
the heteropoly acid-medicated ethanolysis of R-substi-
tuted â,γ,γ-trifluoroallyl alcohols,23 dehydroxylation of
R-fluoro-â-hydroxy esters,24 thermal elimination reaction
from R-fluorosulfoxide,25 the condensation reaction be-
tween 2-fluoro-3-oxo-succinnates and aldehydes,26 mul-
tistep preparation from trifluorovinyl compounds,27 the
reaction between R-azoesters and phenylselenenyl fluo-
ride equivalent, followed by oxidation by H2O2,28 Peterson
olefination,29 one-pot reaction between aldehydes or
ketones and diethyl chloromalonate in the “spray-dried”
KF-sulfolane system,30 reductive coupling-elimination
reaction between methyl dichlorofluoroacetate and car-
bonyl compounds in the presence of zinc(0)-copper(I)
chloride,31 and reaction between â,â′-dihydroxy carboxylic
acid esters and vanadium(V) trichloride oxide.32
Fewer methods have been documented for the stereo-
selective synthesis of (E)-R-fluoro-R,â-unsaturated esters.
The Wadsworth-Horner-Emmons reaction between flu-
orocarboalkoxy-substituted dialkylphosphonate anion and
carbonyl compounds has been the most popular choice.33
Preparation from R-halo-â-mesyloxy sulfoxides has also
been reported.34
Although many of these methods provide a convenient
route to prepare either the (E)- or (Z)-R-fluoro-R,â-
unsaturated esters stereoselectively, there is no general
method that can offer a straightforward route to both (E)-
and (Z)-isomers. Therefore, we explored our methodology
for the stereoselective synthesis of (E)- and (Z)-R-fluoro-
R,â-unsaturated esters and amides from high E/Z and
(Z)-1-bromo-1-fluoroalkenes via palladium-catalyzed car-
boalkoxylation/carboamidation reactions. A portion of this
work has been reported as a preliminary communica-
tion.35
Results and Discussion
(8) Nicolas, E.; Russell, K. C.; Hruby, V. J. J. Org. Chem. 1993, 58,
766-770. (b) Melnyk, O.; Stephan, E.; Pourcelot, G.; Cresson, P.
Tetrahedron 1992, 48, 841-850. (c) Oppolzer, W.; Kingma, A. J.; Poli,
G. Tetrahedron 1989, 45, 479-488. (d) Tomioka, K.; Suenaga, T.; Koga,
K. Tetrahedron Lett. 1986, 27, 369-372.
1-Bromo-1-fluoroalkenes (E/Z ≈ 1:1) 1, which can be
readily prepared from CFBr3, PPh3, and RCHO,36 are
potential synthons for the preparation of (Z)- and (E)-R-
fluoro-R,â-unsaturated esters. However, the (E)- and (Z)-
isomers are difficult to separate by either simple distil-
lation or column chromatography.
McCarthy and co-workers have separated (E)- and (Z)-
1-bromo-1-fluoro-2-phenylethylene by gas chromatogra-
phy (the (E)-isomer has an E/Z ratio of 92:8).37 As most
of the reactions were carried out on a millimolar scale,
it is unlikely to be of practical use for large-scale
(9) Mukaiyama, T.; Iwasawa, N. Chem. Lett. 1981, 913-916.
(10) Marrano, C.; de Macedo, P.; Keillor, J. W. Bioorg. Med. Chem.
2001, 9, 1923-1928.
(11) Choo, H. Y. P.; Peak, K. H.; Park, J.; Kim, D. H.; Chung, H. S.
Eur. J. Med. Chem. 2000, 35, 643-648.
(12) Coulton, S.; Harling J. D.; Porter, R. A.; Thompson, M. WO PCT
2000/007 993, 2000.
(13) (a) Ling, A.; Gregor, V.; Gonzalez, J.; Hong, Y.; Kiel, D.; Kuki,
A.; Shi, S.; Naerum, L.; Madsen, P.; Sams, C.; Lau, J.; Plewe, M. B.;
Feng, J.; Teng, M.; Johnson, M. D.; Teston, K. A.; Sidelmann, U. G.;
Knudsen, L. B. US Patent 107 400, 2003. (b) Gonzales, J.; Sams, C.;
Teng, M.; Ling, A.; Gregor, V.; Hong, Y.; Kiel, D.; Kuki, A.; Shi, S.;
Naerum, L.; Madsen, P.; Lau, J.; Plewe, M. B.; Feng, J.; Johnson, M.
D.; Teston, K. A.; Sidelmann, U. G.; Knudsen, L. B. WO PCT 99/01
423, 1999.
(14) Bondinell, W. E. WO PCT 2000/006 153, 2000.
(15) Gu, H. H.; Dhar, T. G.; Murali, I. E.; WO PCT 2000/026 197,
2000.
(16) Mabire, D.; Adelinet, C. D.; Csoka, I. C.; Venet, M. G. WO PCT
99/29 674, 1999.
(26) (a) Bergmann, E. D.; Shahak, I. J. Chem. Soc. 1961, 4033-
4038. (b) Clemenceau, D.; Cousseau, J. Tetrahedron Lett. 1993, 34,
6903-6906.
(27) Park, H. M.; Uegaki, T.; Konno, T.; Ishihara, T.; Yamanaka,
H. Tetrahedron Lett. 1999, 40, 2985-2988.
(28) Usuki, Y.; Iwaoka, M.; Tomoda, S. J. Chem. Soc., Chem.
Commun. 1992, 1148-1150.
(29) Lin, J.; Welch, J. T. Tetrahedron Lett. 1998, 39, 9613-9616.
(30) Kitazume, T.; Ishikawa, N. Chem. Lett. 1981, 1259-1260.
(31) Ishihara, T.; Kuroboshi, M. Chem. Lett. 1987, 1145-1148.
(32) Ishihara, T.; Shintani, A.; Yamanaka, H.; Tetrahedron Lett.
1998, 39, 4865-4868.
(17) Choi, T. L.; Chatterjee, A. K.; Grubbs, R. H. Abstracts of Papers,
222nd American Chemical Society National Meeting, Chicago, IL, Aug
26-30, 2001; American Chemical Society: Washington, DC, 2001; 303-
ORGN, Part 2.
(18) Kojima, S.; Inai, H.; Hidaka, T.; Ohkata, K. Chem. Commun.
2000, 1795-1796.
(33) (a) Thenappan, A.; Burton, D. J. J. Org. Chem. 1990, 55, 4639-
4642. (b) Machleidt, H.; Wessendorf, R. Liebig Ann. Chem. 1964, 674,
1-10. (c) Daubresse, N.; Chupeau, Y.; Francesch, C.; Lapierre, C.;
Pollet, B.; Rolando, C. Chem. Comm. 1997, 1489-1490. (d) Sano, S.;
Ando, T.; Yokoyama, K.; Nagao, Y. Synlett 1998, 7, 777-779.
(34) Satoh, T.; Itoh, N.; Onda, K.-i.; Kitoh, Y.; Yamakawa, K.
Tetrahedron Lett. 1992, 33, 1483-1484.
(35) Xu, J.; Burton, D. J. Org. Lett. 2002, 4, 831-833.
(36) (a) Vanderhaar, R. W.; Burton, D. J.; Naae, D. G. J. Fluorine
Chem. 1971/72, 1, 381-383. (b) Burton, D. J.; Yang, Z.-Y.; Qiu, W.
Chem. Rev. 1996, 96, 1641-1715. (c) Burton, D. J. J. Fluorine Chem.
1983, 23, 339-357.
(37) Chen, C.; Wilcoxen, K.; Strack, N.; McCarthy, J. R. Tetrahedron
Lett. 1999, 40, 827-830.
(19) Barma, D. K.; Kundu, A.; Zhang, H.; Mioskowski, C.; Falck, J.
R. J. Am. Chem. Soc. 2003, 125, 3218-3219.
(20) (a) Chevrie, D.; Lequeux, T.; Pommelet, J. C. Org. Lett. 1999,
1, 1539-1541. (b) Jouen, C.; Lemaitre, S.; Lequeux, T.; Pommelet J.
C. Tetrahedron 1998, 54, 10801-10810.
(21) Sano, S.; Saito, K.; Nagao, Y. Tetrahedron Lett. 2003, 44, 3987-
3990.
(22) Suzuki, Y.; Sato, M.; Tetrahedron Lett. 2004, 45, 1679-1681.
(23) Funabiki, K.; Sawa, K.-i.; Shibata, K.; Mitsui, M. Synlett 2002,
7, 1134-1136.
(24) Elkik, E.; Francesch, C. Bull. Soc. Chim. Fr. 1986, 3, 423-428.
(25) Allmendinger, T. Tetrahedron 1991, 47, 4905-4914.
J. Org. Chem, Vol. 70, No. 11, 2005 4347