Chemistry Letters 2001
1329
the chelation (N(1)–Ni(1)–N(2), 82.6°; N(1)–Ni(1)–N(3), 83.2°;
N(6)–Ni(2)–N(7), 82.6°; N(6)–Ni(2)–N(8), 82.8°). The lengths
of two nickel-amide nitrogen bonds are different, probably due
to the formation of six-membered chelate ring with one of the
podand pyridine moiety (Ni(1)–N(2), 1.97 Å; Ni(1)–N(3), 1.90
Å; Ni(2)–N(7), 1.95 Å; Ni(2)–N(8), 1.90 Å).
Thanks are due to the Analytical Center, Faculty of
Engineering, Osaka University, for the use of the NMR and MS
instruments.
References and Notes
1
a) H. Sigel and R. B. Martin, Chem. Rev., 82, 385 (1982). b) T. J.
Collins, Acc. Chem. Res., 27, 279 (1994).
2
a) T. Hirao, T. Moriuchi, S. Mikami, I. Ikeda, and Y. Ohshiro,
Tetrahedron Lett., 34, 1031 (1993). b) T. Moriuchi, T. Hirao, Y.
Ohshiro, and I. Ikeda, Chem. Lett., 1994, 915. c) T. Moriuchi,
T.Hirao, T. Ishikawa, Y. Ohshiro, and I. Ikeda, J. Mol. Catal. A:
Chemical, 95, L1 (1995). d) T. Hirao, T. Moriuchi, T. Ishikawa, K.
Nishimura, S. Mikami, Y. Ohshiro, and I. Ikeda, J. Mol. Catal. A:
Chemical, 113, 117 (1996).
3
a) F. A. Chavez, M. M. Olmstead, and P. K. Mascharak, Inorg.
Chem., 35, 1410 (1996). b) F. A. Chavez, M. M. Olmstead, and P.
K. Mascharak, Inorg. Chem., 36, 6323 (1997). c) A. L. Vance, N.
W. Alcock, J. A. Heppert, and D. H. Busch, Inorg. Chem., 37, 6912
(1998).
4
5
a) J. Reedijk, “Bioinorganic Catalysis,” Dekker, New York (1993).
b) I. Bertini, H. B. Gray, S. J. Lippard, and J. S. Valentine,
“Bioinorganic Chemistry,” University Science Books, Mill Valley
(1994).
For reviews on this subject, see: a) N. Kitajima and Y. Moro-oka,
Chem. Rev., 94, 737 (1994). b) L. Que, Jr. and Y. Dong, Acc. Chem.
Res., 29, 190 (1996). c) E. K. van den Beuken and B. L. Feringa,
Tetrahedron, 54, 12985 (1998) and references therein. d) P.
Molenveld, J. F. J. Engbersen, and D. N. Reinhoudt, Chem. Soc.
Rev., 29, 75 (2000).
1
6
3a: mp 107–108 °C (uncorrected); IR (KBr): 3337, 1673 cm– 1; H
NMR (600 MHz, CD3OD): δ 8.45 (ddd, 4H, J = 5.0, 1.8, 0.7 Hz),
7.74 (s, 4H), 7.73 (td, 4H, J = 7.7, 1.8 Hz), 7.34 (ddd, 4H, J = 7.7,
1.2, 0.7 Hz), 7.26 (ddd, 4H, J = 7.7, 5.0, 1.2 Hz), 4.39 (t, 4H, J = 6.0
Hz), 3.77 (t, 8H, J = 7.2 Hz), 3.11 (t, 8H, J = 7.2 Hz), 2.38 (t, 2H, J
= 6.0 Hz); FABMS m/z 823 (M++1); Anal. Calcd for
C45H46N10O6·CH2Cl2: C, 60.86; H, 5.33; N, 15.43%. Found: C,
60.92; H, 5.70; N, 15.62%. 3b: mp 81–82 °C (uncorrected); IR
(KBr): 3335, 1675 cm– 1 1H NMR (400 MHz, CD3OD): δ 8.45
;
(ddd, 4H, J = 5.1, 1.8, 0.7 Hz), 7.78 (s, 4H), 7.73 (td, 4H, J = 7.7,
1.8 Hz), 7.59 (br s, 1H), 7.44–7.48 (m, 3H), 7.34 (ddd, 4H, J = 7.7,
1.1, 0.7 Hz), 7.26 (ddd, 4H, J = 7.7, 5.1, 1.1 Hz), 5.31 (s, 4H), 3.77
(t, 8H, J = 7.3 Hz), 3.11 (t, 8H, J = 7.2 Hz); FABMS m/z 885
(M++1); Anal. Calcd for C50H48N10O6·CH2Cl2: C, 63.29; H, 5.00;
N, 14.47%. Found: C, 63.26; H, 5.18; N, 14.51%.
7
a) T. Yamada, T. Takai, O. Rhode, and T. Mukaiyama, Chem. Lett.,
1991, 1. b) R. Irie, Y. Ito, and T. Katsuki, Tetrahedron Lett., 32,
6891 (1991). c) T. Mukaiyama and T. Yamada, Bull. Chem. Soc.
Jpn., 68, 17 (1995). d) W. Nam, H. J. Kim, S. H. Kim, R. Y. N. Ho,
and J. S. Valentine, Inorg. Chem., 35, 1045 (1996). e) B. B.
Wentzel, P. A. Gosling, M. C. Feiters, and R. J. M. Nolte, J. Chem.
Soc., Dalton Trans., 1998, 2241.
The catalysis of bimetallic nickel(II) complexes 4 was
examined in the catalytic epoxidation reaction of trans-1-
phenylprop-1-ene. Treatment of trans-1-phenylprop-1-ene with
a catalytic amount of 4 in the presence of pivalaldehyde under
molecular oxygen led to the selective formation of the corre-
sponding trans-epoxide in a moderate yield (4a: 60%, 4b:
76%).10 The bimetallic nickel(II) complex 4b exhibited a higher
catalytic activity than the mononuclear nickel(II) complex 5
(53%). The reason still remains obscure why the more enhanced
epoxidation reaction was observed with 4b. The two metal cen-
ters of 4b, which are orientated by a rigid m-xylene spacer, are
supposed to operate cooperatively in the epoxidation reaction;
one metal center of 4b binds to the substrate or two metal cen-
ters activate molecular oxygen.
In conclusion, the binuclear ligands composed of two dis-
crete multidentate N-heterocyclic podand coordination sites
were synthesized. The thus-obtained binuclear ligands were
found to form the bimetallic nickel(II) complexes 4 with two
discrete nickel centers. The bimetallic nickel(II) complex 4b
exhibited the enhanced catalytic activity in the epoxidation reac-
tion of trans-1-phenylprop-1-ene probably due to bimetallic
catalysis. Further investigation on the catalytic reaction includ-
ing mechanistic study is now in progress.
8
9
4a: mp 253–254 °C (decomp.); IR (KBr): 1600 cm– 1; FABMS m/z
937 (M++1); Anal. Calcd for C45H42N10O6Ni2·2MeOH: C, 56.43; H,
5.04; N, 14.00%. Found: C, 56.77; H, 5.17; N, 13.97%. 4b: mp
208–209 °C (decomp.); IR (KBr): 1597 cm–1; FABMS m/z 999
(M++1); Anal. Calcd for C50H44N10O6Ni2·MeOH: C, 59.45; H, 4.70;
N, 13.59%. Found: C, 59.68; H, 4.49; N, 13.50%.
Crystal data for 4a: C45H42N10O6Ni2·CH3OH, M = 968.33, triclinic,
–
space group P1 (No. 2), a = 16.781(3) Å, b = 16.741(2) Å, c =
10.5593(8) Å, α = 101.264(7)°, β = 101.38(1)°, γ = 109.23(2)°, V =
2635.0(8) Å3, Z = 2, Dcalcd = 1.220 g cm–3, R = 0.114, Rw = 0.311.
Crystallographic data (excluding structure factors) for the structure
in this paper have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication number
CCDC-165879 for 4a. Copies of the data can be obtained, free of
charge, on application to CCDC, 12 Union Road, Cambridge CB2
1EZ, U.K. [fax: +44(0)-1223-336033 or e-mail:
deposit@ccdc.cam.ac.uk].
10 To a solution of 4 (0.01 mmol) or 5 (0.02 mmol) in 1,2-
dichloroethane (1 mL) was added trans-1-phenylprop-1-ene (52
µL, 0.40 mmol) and pivalaldehyde (87 µL, 0.80 mmol), and then
the resulting mixture was stirred at 20 °C for 12 h under an atmos-
pheric pressure of oxygen. The formation of the trans-epoxide was
detected by 1H NMR and GLC.