LETTER
Synthesis of Deeper Calix-sugar–Based on the Sonogashira Reaction
1701
(7) (a) Marra, A.; Scherrmann, M. C.; Dondoni, A.; Casnati, A.;
Minari, P.; Ungaro, R. Angew. Chem. Int. Ed. Engl. 1994,
33, 2479. (b) Marra, A.; Dondoni, A.; Sansone, F. J. Org.
Chem. 1996, 61, 5155. (c) Dondoni, A.; Marra, A.;
Scherrmann, M. C.; Casnati, A.; Sansone, F.; Ungaro, R.
Chem. Eur. J. 1997, 3, 1774. (d) Dondoni, A.; Kleban, M.;
Marra, A. Tetrahedron Lett. 1997, 38, 7801. (e) Dondoni,
A.; Marra, A. Chem. Commun. 1999, 2133. (f) Sansone, F.;
Barboso, S.; Casnati, A.; Fabbi, M.; Pochini, A.; Ugozzoli,
F.; Ungaro, R. Eur. J. Org. Chem. 1998, 897. (g) Meunier,
S. J.; Roy, R. Tetrahedron Lett. 1996, 37, 5469. (h) Roy,
R.; Kim, J. M. Angew. Chem. Int. Ed. 1999, 38, 369.
(i) Felix, C.; Parrot-López, H.; Kalchenko, V.; Coleman, A.
W. Tetrahedron Lett. 1998, 39, 9171. (j) Budka, J.;
Tkadlecova, M.; Lhotak, P.; Stibor, I. Tetrahedron 2000, 56,
1883. (k) Saitz-Barria, C.; Torres-Pinedo, A.; Santoyo-
Gonzalez, F. Synlett 1999, 1891. (l) Calvo-Flores, F. G.;
Isac-García, J.; Hernández Mateo, F.; Perez-Balderas, F.;
Calvo-Asín, J. A.; Sanchez-Vaquero, E.; Santoyo-González,
F. Org. Lett. 2000, 2, 2499.
Physical data for compound 4: 5,11,17,23-tetra-tert-Butyl-
25,26,27,28-tetrakis(4’-iodo-benzyloxy)calix[4]arene
obtained as a solid (0.292 g, 84%): mp 212–214 ºC; IR
(KBr): 1479, 1194, 1009 cm–1; 1H NMR (300 MHz, CDCl3)
: 7.55, 6.97 (2 d, 16 H, J = 8.1 Hz, 4 C6H4 I), 6.75 (s, 8 H,
Ar), 4.75 (s, 8 H, 4 CH2O), 4.11, 2.91 (2 d, 8 H, J = 12.7 Hz,
ArCH2Ar), 1.08 (s, 36 H, 4 CMe3); 13C NMR (75 MHz,
CDCl 3) : 152.5, 145.0, 137.7, 133.6, 137.2, 131.4, 125.3,
93.6, 76.1, 33.9, 31.5, 31.4.; HRMS–FAB calcd for
C72H76I4O4 + Na: 1535.1820 (M + Na)+, found: 1535.1828.
(13) General procedure for the synthesis of calix-sugars 6 and
7: To a degassed solution of the corresponding 4-
iodophenylcalixarene (3 and 4)(0.07 mmol)and the
propargyl mannoside 5 (0.32 mmol) in anhyd piperidine
(8 mL) was added [Pd(PPh3)4] (0.007 mmol) and CuI. The
solution was heated at 75 °C under an argon atmosphere for
30 min. The piperidine was removed by evaporation under
vacuum. The residue was acetylated with Ac2O–Pyridine
(1:1, 10 mL). Conventional work-up gave a crude product,
which was purified by column chromatography (silica gel,
EtOAc–hexane 2:1) giving the calix-sugar 6 and 7,
respectively.
(8) (a) Fujimoto, T.; Shimizu, C.; Hayashida, O.; Aoyama, Y. J.
Am. Chem. Soc. 1997, 119, 6676. (b) Hayashida, O.; Kato,
M.; Akagi, K.; Aoyama, Y. J. Am. Chem. Soc. 1999, 121,
11597. (c) Hayashida, O.; Nishiyama, K.; Matsuda, Y.;
Aoyama, Y. Tetrahedron Lett. 1999, 40, 3407.
Physical data for 6: 25,26,27,28-tetrakis{4’-[1’’-O-
(2’’’,3’’’,4’’’,6’’’-tetra-O-Acetyl- -D-manno-
pyranosyl)prop-3’’-ynyl]benzyloxy}calix[4]arene
obtained as a solid (0.120 g, 74%): mp 100–103 °C; [ ]D +52
(c 0.5, CHCl3); IR (KBr): 1749, 1369, 1224, 1049 cm–1; 1H
NMR (300 MHz, CDCl3) : 7.27 (d, 8 H, J = 8.0 Hz, C 6H4),
7.15 (d, 8 H, J = 8.0 Hz, C6H4), 6.51–6.15 (m, 12 H, C6H3),
5.31 (dd, 4 H, J = 10.1 and 3.3 Hz, H-3), 5.25 (t, 4 H,
J = 10.0 Hz, H-4), 5.25 (d, 4 H, J = 3.3 Hz, H-2), 5.06 (s, 4
H, H-1), 4.85 (br s, 8 H, CH2O), 4.43 (AB system, 8 H,
(9) Rudkevich, D. M.; Rebek, J. Eur. J. Org. Chem. 1999, 1991.
(10) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron
Lett. 1975, 4467. (b) Sonogashira, K. In Comprehensive
Organic Synthesis; Trost, B. M.; Fleming, I., Eds.;
Pergamon Press: New York, 1991, 521. (c) Rossi, R.;
Carpita, A.; Bellina, F. Org. Prep. Proced. Int. 1995, 27,
127. (d) Brandsma, L.; Vasilevsky, S. F.; Verkrujisse, H. D.
In Application of Transition Metal Catalyst in Organic
Synthesis; Springer: Berlin, 1998, 174. (e) Sonogashira, K.
In Metal-Catalyzed Cross.Coupling Reactions; Diederich,
F.; Stang, P. J., Eds.; Wiley: Weinheim, 1998, 203.
(11) (a) Burli, R.; Vasella, A. Helv. Chim. Acta 1999, 82, 485.
(b) Roy, R.; Das, S. K.; Santoyo-González, F.; Hernández-
Mateo, F.; Dam, T. K.; Brewer, C. F. Chem. Eur. J. 2000, 6,
1757. (c) Dam, T. K.; Roy, R.; Das, S. K.; Oscarson, S.;
Brewer, C. F. J. Biol. Chem 2000, 19, 14223. (d) Liu, B.;
Roy, R. J. Chem. Soc., Perkin Trans. 1 2001, 773.
(e) Gunji, H.; Vasella, A. Helv. Chim. Acta 2000, 83, 2975.
(f) Sengupta, S.; Sadhukhan, S. K. Carbohydr. Res. 2001,
332, 215.
J = 16.0 Hz,
= 10.2 Hz; ArCH2O), 4.24 (dd, 4 H,
J = 12.1 and 4.8 Hz, H-6), 4.07–3.94 (m, 12 H, H-5,6',
ArCH2Ar), 2.78 (d, 4 H, J = 13.7 Hz, ArCH2Ar), 2.08, 2.02,
1.97, 1.92 (4 s, 48 H, 16 MeCO); 13C NMR (75 MHz,
CDCl3) : 170.0, 169.9, 169.8, 155.0, 138.3, 135.3, 131.7,
129.7, 128.4, 122.5, 121.5, 96.3, 87.2, 83.6, 75.9, 69.5, 69.1,
66.1, 62.4, 55.8, 31.4, 20.9, 20.8, 20.7; HRMS–FAB calcd
for C124H128O44 + Na: 2343.767 (M + Na)+; found: 2343.765.
Physical data for 7: 5,11,17,23-tetra-tert-Butyl-
25,26,27,28-tetrakis{4’-[1’’-O-(2’’’,3’’’,4’’’,6’’’-tetra-O-
acetyl- -D-mannopyranosyl)prop-3’’-ynyl]benzyl-
oxy}calix[4]arene obtained as a solid (0.127 g, 71%): mp
127–129 °C;[ ]D +180 (c 1, chloroform); IR (KBr): 1753,
1485, 1367, 1223 cm–1; 1H NMR (300 MHz, CDCl3) : 7.32
(d, 8 H, J = 8.2 Hz, C6H4), 7.19 (d, 8 H, J = 8.2 Hz, C6H4),
6.66 (s, 8 H, Ar), 5.37 (dd, 4 H, J = 3.4 and 1.6 Hz, H-2),
5.30 (dd, 4 H, J = 10.1 and 3.4 Hz, H-3), 5.29 (t, 4 H, J = 9.7
Hz, H-4), 5.11 (d, 4 H, J = 1.6 Hz, H-1), 4.84 (s, 8 H,
ArCH2O), 4.52 (d, 4 H, J = 15.8 Hz, OCH2), 4.49 (d, 4 H,
J = 15.8 Hz, OCH2), 4.29 (dd, 4 H, J = 12.1 and 4.8 Hz, H-
6), 4.10 (dd, 4 H, J = 11.8 and 2.4 Hz, H-6'), 4.15–4.00 (m,
4 H, H-5), 3.98, 2.91 (2 d, 8 H, J = 12.7 Hz, ArCH2Ar), 2.13,
2.07, 2.02, 1.97 (4 s, 48 H, 16 MeCO), 1.03 (s, 36 H,
4Me3C); 13C NMR (75 MHz, CDCl3) : 170.6, 169.9, 169.8,
169.7, 152.2, 144.8, 138.9, 133.8, 121.4, 131.5, 129.7,
125.1, 96.2, 87.3, 83.4, 76.1, 69.5, 69.1, 69.0, 66.1, 55.7,
33.8, 31.5, 31.4, 20.9, 20.8, 20.7, 20.7; HRMS–FAB calcd
for C140H160O44 + Na: 2568.0180 (M + Na)+, found:
2568.0177.
(12) General procedure for the synthesis of
iodoarylcalixarenes 3 and 4: A suspension of the
corresponding calix[4]arene (1 or 2) (0.23 mmol) and NaH
(1.84 mmol) in DMF (10 mL) was kept at r.t. for 30 min.
After this time p-iodobenzyl bromide (1.38 mmol) was
added. The reaction mixture was then heated at 50 °C for 20
h. After cooling the excess of NaH was slowly quenched
with cold methanol. Ether–toluene (3:1, 100 mL) was added
and the resulting solution washed with water (3 21 mL).
After drying over anhyd Na2SO4 the solvent was evaporated
and the residue crystallized from MeOH giving 3 and 4,
respectively.
Physical data for compound 3: 25,26,27,28-tetrakis(4’-
Iodo-benzyloxy)calix[4]arene obtained as a solid (0.287 g,
97%): mp 80–82 ºC; IR (KBr): 1481, 1450, 1128, 1007, 806
cm–1; 1H NMR (300 MHz, CDCl3) : 7.55 (d, 8 H, J = 8.2 Hz,
C6H4I), 6.97 (d, 8 H, J = 8.2 Hz, C6H4I), 6.61–6.52 (m, 12 H,
C6H3), 4.80 (s, 8 H, CH2), 4.12, 2.97 (2 d, 8 H, J = 13.6 Hz,
ArCH2Ar); 13C NMR (75 MHz, CDCl3) : 155.2, 137.6,
137.4, 137.2, 135.1, 131.4, 129.7, 128.5, 122.6, 93.8, 75.8,
31.4; HRMS–FAB calcd for C56H44I4O4 + Na: 1310.9316 (M
+ Na)+; found: 1310.9319.
(14) Kaufman, R. J.; Sidhu, R. S. J. Org. Chem. 1982, 47, 4941.
(15) Roy, R.; Das, K.; Hernández-Mateo, F.; Santoyo-González,
F.; Gan, Z. Synthesis 2001, 1049.
(16) Synthesis of fully deprotected calix-sugars 8 and 9:
Compounds 6 or 7 (0.1 mmol) was dissolved into methanol
(30 mL) to which a catalytic amount of NaOMe was added.
Synlett 2001, No. 11, 1699–1702 ISSN 0936-5214 © Thieme Stuttgart · New York