X.-Y. Ye et al. / Bioorg. Med. Chem. Lett. 21 (2011) 6699–6704
6703
Table 3
of CYP450 enzymes, no PXR activation and weak ion channel
activities.22 Unfortunately, the propensity of these compounds to
undergo glucuronidation represented a significant hurdle for phar-
macokinetic optimization of this chemotype. As a result, additional
efforts were subsequently directed to the identification of suitable
replacements for the carboxylic acid functionality, including tetra-
zoles, sulfonamides and amide based functionalities. These efforts
will be the topic of future disclosures.
Coarse mouse pharmacokinetic studies and in vitro glucuronidation half-lives of
representative bicyclic acids
AUCa
(0–8 h) (
UGT T1/2
b
Compound
Cmax
(lM)
lMÃh)
(human/mouse) (min)
4a
6y
6w
6k
6l
6o
6f
6q
0.48
1.4
2
4.1
0.3
0.22
<LLQ
<LLQ
0.3
NT
1.9/2.1
4.2/0.8
NT
8.7/2.2
35/8.8
NT
0.07
0.04
<LLQ
<LLQ
0.06
0.04
Supplementary data
0.244
11/2.8
Supplementary data associated with this article can be found, in
NT = not tested.
a
Pharmacokinetic studies were performed in mice using 0.5% methocel, and 0.1%
mole/kg (30 mole/kg for 4a).
tween 80 in water as vehicle. The dose used was 10
l
l
Plasma concentration was measured at 1, 4, and 8 h time points. AUC (0–8 h) was
References and notes
calculated based on the concentrations measured at these time points.
b
Glucuronidation half-lives were measured by incubating substrate (10 lM)
1. Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Diabetes Care 2004, 27, 1047.
2. (a) Tomlinson, J. W.; Stewart, P. M. Nat. Clin. Pract. Endocrinol. Metab. 2005, 1,
92; (b) Wang, M. Curr. Opin. Investig. Drugs 2006, 7, 319; (c) Saiah, E. Curr. Med.
Chem. 2008, 15, 642; (d) Schnackenberg, C. G. Curr. Opin. Investig. Drugs 2008, 9,
295; (e) Stewart, P. M.; Tomlinson, J. W. Diabetes 2009, 58, 14; (f) Boyle, C. D.;
Kowalski, T. J. Exp. Opin. Ther. Patents 2009, 19, 801; (g) Ge, R.; Huang, Y.; Liang,
G.; Li, X. Curr. Med. Chem. 2010, 17, 412. and references cited therein.
3. (a) Kotelevtsev, Y.; Holmes, M. C.; Burchell, A.; Houston, P. M.; Schmoll, D.;
Jamieson, P.; Best, R.; Brown, R.; Edwards, C. R. W.; Seckl, J. R.; Mullins, J. J.
Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 14924; (b) Morton, N. M.; Holmes, M. C.;
Fievet, C.; Staels, B.; Tailleux, A.; Mullins, J. J.; Seckl, J. R. J. Biol. Chem. 2001,
276, 41293.
4. (a) Masuzaki, H.; Paterson, J.; Shinyama, H.; Morton, N. M.; Mullins, J. J.; Seckl, J.
R.; Flier, J. S. Science 2001, 294, 2166; (b) Masuzaki, H.; Yamamoto, H.; Kenyon,
C. J.; Elmquist, J. K.; Morton, N. M.; Paterson, J. M.; Shinyama, H.; Sharp, M. G. F.;
Fleming, S.; Mullins, J. J.; Seckl, J. R.; Flier, J. S. J. Clin. Invest. 2003, 112, 83.
5. (a) Wang, S. J.; Birtles, S.; de Schoolmeester, J.; Swales, J.; Moody, G.; Hislop, D.;
O’Dowd, J.; Smith, D. M.; Turnbull, A. V.; Arch, J. R. Diabetologia 2006, 49, 1333;
(b) Joanisse, D. R.; Thieringer, R.; Deshaies, Y. Endocrinology 2007, 148, 2391; (c)
Walker, B. R.; Connacher, A. A.; Lindsay, R. M.; Webb, D. J.; Edwards, C. R. J. Clin.
Endocrinol. Metab. 1995, 80, 3155; (d) Hermanowski-Vosatka, A.; Balkovec, J. M.;
Cheng, K.; Chen, H. Y.; Hernandez, M.; Koo, G. C.; Le Grand, C. B.; Li, Z.; Metzger, J.
M.; Mundt, S. S.; Noonan, H.; Nunes, C. N.; Olson, S. H.; Pikounis, B.; Ren, N.;
Robertson, N.; Schaeffer, J. M.; Shah, K.; Springer, M. S.; Strack, A. M.; Strowski,
M.; Wu, K.; Wu, T.; Xiao, J.; Zhang, B. B.; Wright, S. D.; Thieringer, R. J. Exp. Med.
2005, 202, 517; (e) Schnackenberg, C. G.; Doe, C. P.; Costell, M. H.; Turner, A. R.;
Cui, J.; Bentley, R.; Maniscalco, K.; Eybye, M. E.; Willette, R. N.; Yue, T.
Hypertension 2007, 50, 87; (f) Andrews, R. C.; Rooyackers, O.; Walker, B. R. J. Clin.
Endocrinol. Metab. 2003, 88, 285.
with either human or mouse liver microsomes (1 mg/mL) in the presence of UDGPA
(5 mM) over a 0, 5, 15, and 30 min period. The incubation mixture was quenched at
each time point and analyzed by LC–MS to obtain the percentage of substrate
remaining for each time point. UGT T1/2 was obtained from the curve plotted from
the above data.
lar or non-polar group) in either the 3-position or 4-position of
phenyl ring appeared to be neutral or slightly increase potency
(6r–6v). The inhibitory activity of benzyl analog 6y decreased
slightly versus 4a but was similar to the unsubstituted phenyl
6x. Clearly substitution at this position is well tolerated with the
enzyme’s ability to accommodate a variety of diverse hydrophobic
groups. For reasons that are unclear, the metabolic stability of the
benzyl analog 6y appears to be enhanced versus the 4-F-phenyl
(4a) and other substituted benzyl derivatives (6z and 6aa). The
most potent inhibitor in this comparison is the phenethyl analog
6bb, which exhibits superior inhibitory activity against both hu-
man (IC50 = 2.2 nM) and mouse (IC50 = 54 nM) 11b-HSD-1,
although its metabolic stability in mouse liver microsomes is quite
poor.
Select compounds from Tables 1 and 2 were tested for enzy-
matic assay in a HEK cell line expressed with human 11b-HSD-1
and were found to exhibit reasonable potency.20 The result sug-
gests that this class of compounds have ability to penetrate cells
and reach the target enzyme in the mitochondria.
6. Tiwari, A. IDrugs 2010, 13, 266. and references cited therein.
7. Some of the most recent publications in this field are: (a) Wang, H.; Robl, J. A.;
Hamann, L. G.; Simpkins, L.; Golla, R.; Li, Y.-X.; Seethala, R.; Zvyaga, T.; Gordon,
D. A.; Li, J. J. Bioorg. Med. Chem. Lett. 2011, 21, 4146; (b) Xu, Z.; Tice, C. M.; Zhao,
W.; Cacatian, S.; Ye, Y.-J.; Singh, S. B.; Lindblom, P.; McKeever, B. M.; Krosky, P.
M.; Kruk, B. A.; Berbaum, J.; Harrison, R. K.; Johnson, J. A.; Bukhtiyarov, Y.;
Panemangalore, R.; Scott, B. B.; Zhao, Y.; Bruno, J. G.; Togias, J.; Guo, J.; Guo, R.;
Carroll, P. J.; McGeehan, G. M.; Zhuang, L.; He, W.; Claremon, D. A. J. Med. Chem.
2011, 54, 6050; (c) Veniant, M. M.; Hale, C.; Hungate, R. W.; Gahm, K.; Emery,
M. G.; Jona, J.; Joseph, S.; Adams, J.; Hague, A.; Moniz, G.; Zhang, J.; Bartberger,
M. D.; Li, V.; Syed, R.; Jordan, S.; Komorowski, R.; Chen, M. M.; Cupples, R.; Kim,
K. W.; St. Jean, D. J.; Johansson, L.; Henriksson, M. A.; Williams, M.; Vallgarda,
J.; Fotsch, C.; Wang, M. J. Med. Chem. 2010, 53, 4481; (d) Wan, Z.-K.; Chenail, E.;
Xiang, J.; Li, H.-Q.; Ipek, M.; Bard, J.; Svenson, K.; Mansour, T. S.; Xu, X.; Tian, X.;
Suri, V.; Hahm, S.; Xing, Y.; Johnson, C. E.; Li, X.; Qadri, A.; Panza, D.; Perreault,
M.; Tobin, J. F.; Saiah, E. J. Med. Chem. 2009, 52, 5449; (e) Xiang, J.; Wan, Z.-K.;
Li, H.-Q.; Ipek, M.; Binnun, E.; Nunez, J.; Chen, L.; McKew, J. C.; Mansour, T. S.;
Xu, X.; Suri, V.; Tam, M.; Xing, Y.; Li, X.; Hahm, S.; Tobin, J.; Saiah, E. J. Med.
Chem. 2008, 51, 4068.
Despite the marginal mouse potency generally observed for this
chemotype, several compounds having reasonable human in vitro
potency and good human/mouse metabolic stability were assessed
in a coarse mouse pharmacokinetic model and the results are sum-
marized in Table 3. Unfortunately all compounds exhibited low
plasma exposure in mice, despite their reasonably good PAMPA
permeability, solubility, and in vitro microsomal metabolic stabil-
ity profiles (shown in Tables 1 and 2). To rationalize these results,
we looked to see if phase 2 metabolism could be contributing to
the low exposure and rapid clearance, particularly since the pres-
ence of the carboxyl groups enable glucuronidation as a route of
elimination. While glucuronidation rates varied in the human
in vitro assay, half-lives in the mouse assay were quite short, sug-
gesting that rapid glucuronidation (perhaps coupled with some
oxidative metabolism) was responsible for the poor pharmacoki-
netic exposures of these compounds upon oral dosing.
8. Refs. 2c,f and the references cited therein.
9. (a) Rohde, J. J.; Pliushchev, M. A.; Sorensen, B. K.; Wodka, D.; Shuai, Q.; Wang, J.;
Fung, S.; Monzon, K. M.; Chiou, W. J.; Pan, L.; Deng, X.; Chovan, L. E.; Ramaiya,
A.; Mullally, M.; Henry, R. F.; Stolarik, D. F.; Imade, H. M.; Marsh, K. C.; Beno, D.
W. A.; Fey, T. A.; Droz, B. A.; Brune, M. E.; Camp, H. S.; Sham, H. L.; Frevert, E.;
Uli, ; Jacobson, P. B.; Link, J. T. J. Med. Chem. 2007, 50, 149; (b) Ebdrup, S.
WO2007107550.
10. (a) Tice, C. M.; Zhao, W.; Xu, Z.; Cacatian, S. T.; Simpson, R. D.; Ye, Y.-J.; Singh, S.
B.; McKeever, B. M.; Lindblom, P.; Guo, J.; Krosky, P. M.; Kruk, B. A.; Berbaum, J.;
Harrison, R. K.; Johnson, J. J.; Bukhtiyarov, Y.; Panemangalore, R.; Scott, B. B.;
Zhao, Y.; Bruno, J. G.; Zhuang, L.; McGeehan, G. M.; He, W.; Claremon, D. A.
Bioorg. Med. Chem. Lett. 2010, 20, 881; (b) WO2004/056745.
11. Though the attempts to grow co-crystal structure of ligands 4–6 with human
11b-HSD-1 failed, we did obtain several co-crystal structures of their
corresponding amide derivatives bound to human 11b-HSD-1. The
conformation of adamantyl moiety and carbonyl group in co-crystal
In summary, we have designed and synthesized a series of poly-
cyclic carboxylic acids as potent and selective21 11b-HSD-1 inhibi-
tors. These compounds were generally potent against the human
enzyme, but less potent against the mouse (better analogs exhib-
ited IC50 values in the 100–300 nM range). Though not fully
reported, the chemotype in general exhibited favorable develop-
ment attributes such as good metabolic stability, weak inhibition