pubs.acs.org/joc
ever, most of the methods suffer from harsh reaction condi-
Synthesis of Chromones via Palladium-Catalyzed
Ligand-Free Cyclocarbonylation of o-Iodophenols with
Terminal Acetylenes in Phosphonium Salt Ionic Liquids
tions, poor substituent tolerance, and low to moderate yields.
During the past two decades, the palladium-catalyzed carbo-
nylation of o-iodophenols with terminal acetylenes has become
an attractive method to synthesize chromones.4 In some
situations, this reaction produces a mixture of six-membered
chromones 1 and five-membered aurones 2 (Scheme 1).5
Qian Yang and Howard Alper*
Centre for Catalysis Research and Innovation, Department of
Chemistry, University of Ottawa, 10 Marie Curie, Ottawa,
Ontario K1N 6N5, Canada
SCHEME 1. Pd-Catalyzed Cyclocarbonylation of o-Iodo-
phenols and Terminal Acetylenes
Received October 16, 2009
Ionic liquids (ILs), because of their low volatility, non-
flammability, capability to dissolve various organic and in-
organic compounds, and potentially recyclable properties,
have attracted considerable attention as environmentally
friendly reaction media. Many transition metal-catalyzed reac-
tions in task-specific ionic liquids (TSILs) have established
some highly effective and easily separable catalytic systems.6
Imidazolium-based ionic liquids are most commonly used as
these alternative solvents.7 In recent years, phosphonium
salt ionic liquids (PSILs) have been the subject of some
The highly efficient and selective palladium-catalyzed
ligand-free cyclocarbonylation reaction of o-iodophenols
with terminal acetylenes and CO in the phosphonium salt
ionic liquid, C14H29(C6H13)3PþBr-, affords diversified chro-
mones in good to excellent yields under atmospheric CO
pressure. The ionic liquid, as the reaction medium, enhances
the efficiency of the cyclocarbonylation reaction.
(4) (a) Awuah, E.; Capretta, A. Org. Lett. 2009, 11, 3210. (b) Ma, W.; Li, X.;
Yang, J.; Liu, Z.; Chen, B.; Pan, X. Synthesis 2006, 2489. (c) Liang, B.; Huang,
M.; You, Z.; Xiong, Z.; Lu, K.; Fathi, R.; Chen, J.; Yang, Z. J. Org. Chem. 2005,
70, 6097. (d) Miao, H.; Yang, Z. Org. Lett. 2000, 2, 1765. (e) Bhat, A. S.;
Whetstone, J. L.;Brueggemeier, R. W.Tetrahedron Lett. 1999, 40, 2469. (f) Torii,
S.; Okumoto, H.; Xu, L.-H.; Sadakane, M.; Shostakovsky, M. V.; Ponomaryov,
A. B.; Kalinin, V. N. Tetrahedron 1993, 49, 6773. (g) An, Z. W.; Catellani, M.;
Chiusoli, G. P. J. Organomet. Chem. 1990, 397, 371. (h) Kalinin, V. N.;
Shostakovsky, M. V.; Ponamaryov, A. B. Tetrahedron Lett. 1990, 31, 4073.
(5) Ciattini, P. G.; Morera, E.; Ortar, G.; Rossi, S. S. Tetrahedron 1991,
47, 6449.
(6) (a) Cao, H.; Xiao, W. J.; Alper, H. J. Org. Chem. 2007, 72, 8562.
(b) Fukuyama, T.; Inouye, T.; Ryu, I. J. Organomet. Chem. 2007, 692, 685.
(c) Li, Y.; Yu, Z.; Alper, H. Org. Lett. 2007, 9, 1647. (d) Ye, F.; Alper, H. J. Org.
Chem. 2007, 72, 3218. (e) Li, Y.; Alper, H.; Yu, Z. K. Org. Lett. 2006, 8, 5199.
(f) Ye, F.; Alper, H. Adv. Synth. Catal. 2006, 348, 1855. (g) Zhao, X.; Alper, H.;
Yu, Z. J. Org. Chem. 2006, 71, 3988. (h) Calo, V.; Nacci, A.; Monopoli, A. Eur.
J. Org. Chem. 2006, 3791. (i) Xue, H.; Verma, R.; Shreeve, J. M. J. Fluorine
Chem. 2006, 127, 159. (j) Davis, J. H. Task-specific ionic liquids. In. Chem. Lett.
2004, 33, 1072. (k) Shi, F.; Gu, Y.; Zhang, Y.; Deng, Y. Catal. Surv. Asia 2004, 8,
179. (l) Calo, V.; Giannoccaro, P.; Nacci, A.; Monopoli, A. J. Organomet. Chem.
2002, 645, 152. (m) Mizushima, E.; Hayashi, T.; Tanaka, M. Green Chem. 2001,
3, 76.
(7) (a) Welton, T. Coord. Chem. Rev. 2004, 248, 2459. (b) Wilkes, J. S.
Green. Chem. 2002, 4, 73. (c) Wasserscheid, P.; Welton, T. Ionic Liquid in
Synthesis; Wiley-VCH & CoKGaA: Weinheim, Germany, 2002. (d) Dupont, J.;
De Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667. (e) Sheldon, R. A.
Chem. Commun. 2001, 2399. (f) Wasserscheid, P.; Keim, W. Angew. Chem., Int.
Ed. 2000, 39, 3772. (g) Earle, M. J.; Seddon, K. R. Pure Appl. Chem. 2000, 72,
1391. (h) Welton, T. Chem. Rev. 1999, 99, 2071.
(8) (a) McNulty, J.; Nair, J. J.; Robertson, A. J. Org. Lett. 2007, 9, 4575.
(b) McNulty, J.; Cheekoori, S.; Bender, T. P.; Coggan, J. A. Eur. J. Org. Chem.
2007, 9, 1423. (c) McNulty, J.; Nair, J. J.; Cheekoori, S.; Larichev, V.; Capretta,
A.; Robertson, A. J. Chem.;Eur. J. 2006, 12, 9314. (d) Vygodskii, Y. S.;
Shaplov, A. S.; Lozinskaya, E. I.; Filippov, O. A.; Shubina, E. S.; Bandari, R.;
Buchmeiser, M. R. Macromolecules 2006, 39, 7821. (e) McNulty, J.; Cheekoori,
S.;Nair, J. J.;Larichev, V.;Capretta, A.;Robertson, A. J.Tetrahedron Lett. 2005,
46, 3641. (f) McNulty, J.; Capretta, A.; Cheekoori, S.; Clyburne, J. A. C.;
Robertson, A. J. Chim. Oggi 2004, 22, 13. (g) Gerritsma, D. A.; Robertson, A. J.;
McNulty, J.; Capretta, A. Tetrahedron Lett. 2004, 45, 7629. (h) Ramani, A.; Earle,
M. J.; Robertson, A. J. PCT Int. Appl., 2003, 24 (i) McNulty, J.; Capretta, A.;
Wilson, J.; Dyck, J.; Adjabeng, G.; Robertson, A. J. Chem. Commun. 2002, 1986.
(j) Karodia, N.; Guise, S.; Newlands, C.; Andersen, J.-A. Chem. Commun. 1998,
2341. (k) Kaufmann, D. E.; Nouroozian, M.; Henze, H. Synlett 1996, 1091.
Flavones, also known as 2-phenylchromones, represent a
major class of naturally occurring products, biologically active
substances, and drugs.1 Because of their broad range of
significant biological activities,2 synthetic approaches to this
family of products have been extensively investigated.3 How-
(1) (a) Harborne, J. B.; Baxter, H. The Handbook of Natural Flavonoids:
John Wiley & Son: Chichester, UK, 1999; Vols. 1 and 2. (b) Harborne, J. B. The
Flavonoids: Advances in Research since 1986; Chapman and Hall: London, UK,
1994. (c) Harborne, J. B. The Flavonoids: Advances in Research since 1980;
Chapman and Hall: London, UK, 1988.
(2) (a) Lewis, K.; Stermitz, F. R.; Collins, F. Proc. Natl. Acad. Sci. U.S.A.
2000, 97, 1433. (b) Costantino, L.; Rastelli, G.; Gamberini, M. C.; Vinson,
J. A.; Bose, P.; Iannone, A.; Staffieri, M.; Antolini, L.; Corso, A. D.; Mura, U.;
ꢀ
€
Albasini, A. J. Med. Chem. 1999, 42, 1881. (c) Ferte, J.; Kuhnel, J.-M.;
Chapuis, G.; Rolland, Y.; Lewin, G.; Schwaller, M. A. J. Med. Chem. 1999,
42, 478. (d) Artico, M.; Santo, R. D.; Costi, R.; Novellino, E.; Greco, G.;
Massa, S.; Tramontano, E.; Marongiu, M. E.; Montis, A. D.; Colla, P. L.
J. Med. Chem. 1998, 41, 3949. (e) Akama, T.; Ueno, K.; Saito, H.; Kasai, M.
Synthesis 1997, 1446. (f) Fesen, M. R.; Pommier, Y.; Leteurtre, F.; Hiroguchi,
S.; Yung, J.; Kohn, K. W. Biochem. Pharmacol. 1994, 48, 595.
(3) (a) Tabaka, A. C.; Murthi, K. K.; Pal, K.; Teleha, C. A. Org. Process Res.
ꢁ
Dev. 1999, 3, 256. (b) Lokshin, V.; Heynderickx, A.; Samat, A.; Pepe, G.;
Guglielmetti, R. Tetrahedron Lett. 1999, 40, 6761. (c) Dekermendjian, K.;
Kahnberg, P.; Witt, M.-R.; Sterner, O.; Nielsen, M.; Liljefors, T. J. Med. Chem.
1999, 42, 4343. (d) Costantino, L.; Rastelli, G.; Gamberini, M. C.; Vinson, J. A.;
Bose, P.; Iannone, A.; Staffieri, M.; Antolini, L.; Corso, A. D.; Mura,
U.; Albasini, A. J. Med. Chem. 1999, 42, 1881. (e) Marder, M.; Viola, H.;
Bacigaluppo, J. A.; Colombo, M. I.; Wasowski, C.; Wolfman, C.; Medina, J. H.;
ꢀ
Ruveda, E. A.; Paladini, A. C. Biochem. Biophys. Res. Commun. 1998, 249, 481.
(f) Riva, C.; Toma, C. D.; Donadel, L.; Boi, C.; Pennini, R.; Motta, G.; Leonardi,
A. Synthesis 1997, 195. (g) Pinto, D. C. G. A.; Silva, A. M. S.; Cavaleiro, J. A. S.
J. Heterocycl. Chem. 1996, 33, 1887. (h) McGarry, L. W.; Detty, M. R. J. Org.
Chem. 1990, 55, 4349.
948 J. Org. Chem. 2010, 75, 948–950
Published on Web 01/12/2010
DOI: 10.1021/jo902210p
r
2010 American Chemical Society