Handbook, ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic,
San Diego, CA, 2000, vol. 2, ch. 12, p. 233–300.
2 E. Vogel, S. Will, A. Schulze-Tilling, L. Neumann, J. Lex, E. Bill, A. X.
Trautwein and K. Wieghardt, Angew. Chem., Int. Ed. Engl., 1994, 33,
731; S. Will, J. Lex, E. Vogel, V. A. Adamian, E. Van Caemelbecke and
K. M. Kadish, Inorg. Chem., 1996, 35, 5577; S. Will, J. Lex, E. Vogel,
H. Schmickler, J.-P. Gisselbrecht, C. Haubtmann, M. Bernard and M.
Gross, Angew. Chem., Int. Ed. Engl., 1997, 36, 357.
3 R. Paolesse, S. Licoccia, M. Fanciullo, E. Morgante and T. Boschi,
Inorg. Chim. Acta, 1993, 203, 107; R. Paolesse, S. Licoccia, G. Bandoli,
A. Dolmella and T. Boschi, Inorg. Chem., 1994, 33, 1171; V. A.
Adamian, F. D’Souza, S. Licoccia, M. L. Di Vona, E. Tassoni, R.
Paolesse, T. Boschi and K. M. Smith, Inorg. Chem., 1995, 34, 532; R.
Paolesse, L. Jaquinod, D. J. Nurco, S. Mini, F. Gagone, T. Boschi and
K. M. Smith, Chem. Commun., 1999, 1307.
4 Z. Gross, N. Galili and I. Saltsman, Angew. Chem., Int. Ed., 1999, 38,
1427; Z. Gross, N. Galili, L. Simkhovich, I. Saltsman, M. Botoshansky,
D. Blaser, R. Boese and I. Goldberg, Org. Lett., 1999, 1, 599; for related
work, see also:; D. T. Gryko, Chem. Commun., 2000, 2243; R. Paolesse,
S. Nardis, F. Sagone and R. G. Khoury, J. Org. Chem., 2000, 66, 550;
D. T. Gryko and K. Jadach, J. Org. Chem., 2001, 66, 4267; C. V.
Asokan, S. Smeets and W. Dehaen, Tetrahedron Lett., 2001, 42,
4483.
5 Z. Gross, L. Simkhovich and N. Galili, Chem. Commun., 1999, 599; Z.
Gross, G. Golubkov and L. Simkhovich, Angew. Chem., Int. Ed., 2000,
39, 4045; G. Golubkov, J. Bendix, H. B. Gray, A. Mahammed, I.
Goldberg, A. J. DiBilio and Z. Gross, Angew. Chem., Int. Ed., 2001, 40,
2132.
6 R. Paolesse, R. K. Pandey, T. P. Forsyth, L. Jaquinod, K. R. Gerzevske,
D. J. Nurco, M. O. Senge, S. Licoccia, T. Boschi and K. M. Smith, J.
Am. Chem. Soc., 1996, 118, 3869; F. Jérome, C. P. Gros, C. Tardieux,
J.-M. Barbe and R. Guilard, Chem. Commun., 1998, 2007; R. Paolesse,
A. Macagnano, D. Monti, P. Tagliatesa and T. Boschi, J. Porph. Phthal.,
1998, 2, 501; F. Jérome, C. P. Gros, C. Tardieux, J.-M. Barbe and R.
Guilard, New J. Chem., 1998, 1327; R. Paolesse, F. Sagone, A.
Macagnano, T. Boschi, L. Prodi, L. Mantalti, N. Zaccheroni, F. Boletta
and K. M. Smith, J. Porph. Phthal., 1999, 3, 364.
Scheme 4
substituted corrole ligands, some which are hardly or not at all
accessible by any other of the corrole forming reactions known
today.
Although the mechanistic details of the Mn(II)–O2 induced
cyclization of 2,2A-bisdipyrrins are still in question, the
formation of 4–6 points to an analogous oxidative transforma-
tion in the porphyrin field, namely the reaction of a,c-biladienes
9 with several metal salts or oxidants to yield porphyrins 10
(Scheme 4). This valuable transformation, initially found by
Johnson et al.,13 has been thoroughly investigated and mecha-
nistically explained by Smith.14 It appears highly probable, that
a related sequence of steps occurs also in the case of 2,2A-
bisdipyrrin cyclization. As a major difference to the macro-
cyclization of a,c-biladienes we believe, that in our case a
templating action of the metal ion—prior to or after partial
oxidation—is crucial to the reaction. Most probably, the 2,2A-
bisdipyrrin unit will not stabilise the tense, helical conformation
necessary for ring closure on its own, but rather retain the ability
of an almost free rotation around the central pyrrole–pyrrole
axis. Additionally, it is quite questionable, whether the terminal
methyl groups of a 2,2A-bisdipyrrin in a closed, quasi-
macrocyclic conformation would have sufficient overlap with-
out being forced by a central metal ion.
Further studies towards an understanding of the C1 extrusion,
the use of other metal ions and/or co-oxidants, and the
application of the new macrocyclization in the synthesis of
tailor-made and functionalized corroles and metallocorroles are
currently in progress.
This work was funded by the Deutsche Forschungsge-
meinschaft (Emmy-Noether-Programm) and the Fonds der
Chemischen Industrie. We thank Professor Helmut Werner for
his generous support.
7 Y. Murakami, Y. Matsuda, K. Sakata, S. Yamada, Y. Tanaka and Y.
Aoyama, Bull. Chem. Soc. Jpn., 1981, 54, 163.
8 A. W. Johnson and R. Price, J. Chem. Soc., 1960, 1649; A. W. Johnson
and I. T. Kay, Proc. Chem. Soc., 1961, 168.
9 M. Bröring, Synthesis, 2000, 1291; M. Bröring, D. Griebel, C. Hell and
A. Pfister, J. Porph. Phthal., 2001, 5, 708.
10 K. M. Kadish, V. A. Adamian, E. Van Caemelbecke, E. Gueletii, S.
Will, C. Erben and E. Vogel, J. Am. Chem. Soc., 1998, 120, 11986.
11 Spectroscopic data for 5: mp. 252 °C (decomp.); MS (FAB): m/z 726.4,
M+; calc. for C47H51N4Mn: C 77.66, H 7.07, N 7.71; found: C 77.21, H
7.25, N 7.53%.
12 Spectroscopic data for 6: mp. 294 °C (decomp.); MS (FAB): m/z 754.5,
M+; calc. for C49H55N4Mn: C 77.96, H 7.34, N 7.42; found: C 77.97, H
7.52, N 7.44%.
13 A. W. Johnson and I. T. Kay, J. Chem. Soc. C, 1961, 2418.
14 K. M. Smith, in The Porphyrin Handbook, ed. K. M. Kadish, K. M.
Smith and R. Guilard, Academic, San Diego, CA, 2000, vol. 1, ch. 3, p.
119–148.
Notes and references
1 (a) R. Paolesse, in The Porphyrin Handbook, ed. K. M. Kadish, K. M.
Smith and R. Guilard, Academic, San Diego, CA, 2000, vol. 2, ch. 11,
p. 201–232 ; (b) C. Erben, S. Will and K. M. Kadish, in The Porphyrin
Chem. Commun., 2001, 2336–2337
2337