3640
G. Butora et al. / Bioorg. Med. Chem. Lett. 17 (2007) 3636–3641
9. Quinones, M. P.; Estrada, C. A.; Kalkonde, Y.; Ahuja, S.
K.; Kuziel, W. A.; Mack, M.; Ahuja, S. S. J. Mol. Med.
2005, 83, 672.
10. Charo, I. F.; Taubman, M. B. Circ. Res. 2004, 95, 858.
11. Mahad, D. J.; Ransohoff, R. M. Semin. Immunol. 2003,
15, 23.
length is two to three carbon atoms. The presence of a
heteroatom within the chain (5j, 5l, and 5m) did not
seem to have a dramatic influence on the binding
affinity. Conversely, branching in the side chain (5d
or 5f) improved both the murine as well as human
CCR2 activities. With additional restriction of the ali-
phatic substituent (5k, cyclopropyl, and 5g, cyclopro-
pylmethyl) both the human and murine affinities
remained approximately the same.
12. Boring, L. F.; Gosling, J. A.; Cleary, M. D.; Charo, F.
Circulation 1998, 98, 309.
13. Gu, L.; Okada, Y.; Clinton, S. K.; Gerard, C.; Sukhova,
G. K.; Libby, P.; Rollins, B. J. Mol. Cell 1998, 2, 275.
14. Gosling, J.; Slaymaker, S.; Gu, L.; Tseng, S.; Zlot, C. H.;
Young, S. G.; Rollins, B. J.; Charo, I. F. J. Clin. Invest.
1999, 103, 773.
15. Gong, J. H.; Ratkay, L. G.; Waterfield, J. D.; ClarkLewis,
I. J. Exp. Med. 1997, 186, 131.
16. Dawson, J.; Miltz, W.; Mir, A. K.; Wiessner, C. Expert
Opin. Ther. Targets 2003, 7, 35.
17. Mirzadegan, T.; Diehl, F.; Ebi, B.; Bhakta, S.; Polsky, I.;
McCarley, D.; Mulkins, M.; Weatherhead, G. S.; Lapi-
erre, J. M.; Dankwardt, J.; Morgans, D., Jr.; Wilhelm, R.;
Jarnagin, K. J. Biol. Chem. 2000, 275, 25562.
18. Baba, M.; Nishimura, O.; Kanzaki, N.; Okamoto, M.;
Sawada, H.; Iizawa, Y.; Shiraishi, M.; Aramaki, Y.;
Okonogi, K.; Ogawa, Y.; Meguro, K.; Fujino, M. Proc.
Natl. Acad. Sci. U.S.A. 1999, 96, 5698.
19. Shiraishi, M.; Aramaki, Y.; Seto, M.; Imoto, H.; Nishik-
awa, Y.; Kanzaki, N.; Okamoto, M.; Sawada, H.;
Nishimura, O.; Baba, M.; Fujino, M. J. Med. Chem.
2000, 43, 2049.
A similar overall trend was observed in the analogous 5-
fluoro-3-trifluoromethylbenzyl series (compounds 6a–m,
Table 2), except that both the human and murine activ-
ities were approximately twofold higher. Within this ser-
ies, isopropyl (6d), isobutyl (6f), and cyclopropyl (6k)
substitution yielded compounds with activities in the
nanomolar range.
Compounds which were found to be the most active in
the respective binding assays were also the most potent
in the chemotaxis32 and calcium flux33 functional assays
as shown in Table 3. In fact, the shorter, branched alkyl
substituted cyclopentanes 6d, f, and k were generally
subnanomolar in the monocyte chemotaxis and calcium
flux assays.
The pharmacokinetic properties of selected compounds
were evaluated in Sprague–Dawley Rats. For example,
the isopropyl derivative 6d exhibited excellent drug lev-
els after both intravenous (1.0 mg/kg, AUCn =
1.637 lM) and oral (3.0 mg/kg, AUCn = 0.492 lM, nor-
malized value) administration. The compound showed a
moderate clearance rate of 19.4 mL/min/kg, low volume
of distribution (2.99 L/kg), and good oral bioavailability
of 32%, Table 4.
20. Forbes, I. T.; Cooper, D. G.; Dodds, E. K.; Hickey, D.
M.; Ife, R. J.; Meeson, M.; Stockley, M.; Berkhout, T. A.;
Gohil, J.; Groot, P. H.; Moores, K. Bioorg. Med. Chem.
Lett. 2000, 10, 1803.
21. Witherington, J.; Bordas, V.; Cooper, D. G.; Forbes, I. T.;
Gribble, A. D.; Ife, R. J.; Berkhout, T.; Gohil, J.; Groot,
P. H. Bioorg. Med. Chem. Lett. 2001, 11, 2177.
22. Yang, L. H.; Zhou, C. Y.; Guo, L. Q.; Morriello, G.;
Butora, G.; Pasternak, A.; Parsons, W. H.; Mills, S. G.;
MacCoss, M.; Vicario, P. P.; Zweerink, H.; Ayala, J. M.;
Goyal, S.; Hanlon, W. A.; Cascieri, M. A.; Springer, M. S.
Bioorg. Med. Chem. Lett. 2006, 16, 3735.
23. Pasternak, A.; Marino, D.; Vicario, P. P.; Ayala, J. M.;
Cascierri, M. A.; Parsons, W.; Mills, S. G.; MacCoss, M.;
Yang, L. H. J. Med. Chem. 2006, 49, 4801.
In conclusion, systematic variation of the aliphatic side
chain attached at C1 of the cyclopentane core in lead
structure 5 and 6 yielded compounds with low nanomo-
lar affinities for both the human and murine CCR2
receptor. Some of these compounds, especially those
belonging to the 3-fluoro-5-trifluoro-methylbenzamide
series (e.g., 6d, 6f, and 6k) were ideally suited for target
validation and other biological studies requiring a ro-
dent model.
24. Butora, G.; Morriello, G. J.; Kothandaraman, S.; Guia-
deen, D.; Pasternak, A.; Parsons, W. H.; MacCoss, M.;
Vicario, P. P.; Cascieri, M. A.; Yang, L. H. Bioorg. Med.
Chem. Lett. 2006, 16, 4715.
25. Yang, L., Butora, G., Jiao, R. X., Pasternak, A., Zhou, C.,
Parsons, W. H., MacCoss, M., Vicario, P. P., Ayala, M. J.,
Cascieri, M. A. Discovery of 3-Piperidinyl-1-cyclopentan-
ecarboxamide as a Novel Scaffold for Highly Potent CCR2
Receptor Antagonists, 232nd Fall National Meeting and
Exposition, San Francisco, CA, September 10, 2006.
26. CHO cells (5 · 104) expressing either human CCR2B I40L
or murine CCR2B receptor were incubated with
125I-hMCP-1 (20–25 pM, 2200 Ci/mmol; Dupont/New
England Nuclear) or 125I-JE (20–25 pM, 2200 Ci/mmol;
Dupont/New England Nuclear) at room temperature for
45 min in buffer containing Hepes (50 mM), MgCl2
(5 mM), CaCl2 (1 mM), pH 7.4, 0.5% BSA, and protease
inhibitor cocktail. The reactions were terminated by
filtration over GF/B filters that had been presoaked in
0.10% polyethyleneimine using a Packard Cell Harvester
to separate bound from free ligand. The filters were
washed with 25 mM Hepes, pH 7.5, containing 500 mM
References and notes
1. Thelen, M. Nat. Immunol. 2001, 2, 129.
2. Bachmann, M. F.; Kopf, M.; Marsland, B. J. Nat. Rev.
Immunol. 2006, 6, 159.
3. Onuffer, J. J.; Horuk, R. Trends Pharmacol. Sci. 2002, 23,
459.
4. Pease, J. E.; Williams, T. J. Br. J. Pharmacol. 2006, 147,
S212.
5. Locati, M.; Murphy, P. M. Annu. Rev. Med. 1999, 50, 425.
6. Wells, T. N.; Power, C. A.; Shaw, J. P.; Proudfoot, A. E.
Trends Pharmacol. Sci. 2006, 27, 41.
7. Laing, K. J.; Secombes, C. J. Dev. Comp. Immunol. 2004,
28, 443.
8. Sozzani, S.; Introna, M.; Bernasconi, S.; Polentarutti, N.;
Cinque, P.; Poli, G.; Sica, A.; Mantovani, A. J. Leukoc.
Biol. 1997, 62, 30.
NaCl and the plates dried. The plates were counted for 125
I
radioactivity using Microscint 0 (Packard) and a Top-
count NXT (Packard).