Journal of Medicinal Chemistry
Article
(19) Dehmlow, H.; Aebi, J. D.; Jolidon, S.; Ji, Y. H.; von der Mark, E.
M.; Himber, J.; Morand, O. H. Synthesis and structure−activity studies
of novel orally active non-terpenoic 2,3-oxidosqualene cyclase
inhibitors. J. Med. Chem. 2003, 46, 3354−3370.
(20) Lenhart, A.; Reinert, D. J.; Aebi, J. D.; Dehmlow, H.; Morand,
O. H.; Schulz, G. E. Binding structures and potencies of oxidosqualene
cyclase inhibitors with the homologous squalene−hopene cyclase. J.
Med. Chem. 2003, 46, 2083−2092.
(21) Rowe, A. H.; Argmann, C. A.; Edwards, J. Y.; Sawyez, C. G.;
Morand, O. H.; Hegele, R. A.; Huff, M. W. Enhanced synthesis of the
oxysterol 24(S),25-epoxycholesterol in macrophages by inhibitors of
2,3-oxidosqualene:lanosterol cyclase: a novel mechanism for the
attenuation of foam cell formation. Circ. Res. 2003, 93, 717−725.
(22) Telford, D. E.; Lipson, S. M.; Barrett, P. H.; Sutherland, B. G.;
Edwards, J. Y.; Aebi, J. D.; Dehmlow, H.; Morand, O. H.; Huff, M. W.
A novel inhibitor of oxidosqualene:lanosterol cyclase inhibits very low-
density lipoprotein apolipoprotein B100 (apoB100) production and
enhances low-density lipoprotein apoB100 catabolism through marked
reduction in hepatic cholesterol content. Arterioscler., Thromb., Vasc.
Biol. 2005, 25, 2608−2614.
(36) Chou, T. C. Theoretical basis, experimental design, and
computerized simulation of synergism and antagonism in drug
combination studies. Pharm. Rev. 2006, 58, 621−681.
(37) Lee, J. J.; Kong, M.; Ayers, G. D.; Lotan, R. Interaction index
and different methods for determining drug interaction in combination
therapy. J. Biopharm. Stat. 2007, 17, 461−480.
(38) Wuitschik, G.; Carreira, E. M.; Wagner, B.; Fischer, H.; Parrilla, I.;
Schuler, F.; Rogers-Evans, M.; Muller, K. Oxetanes in drug discovery:
structural and synthetic insights. J. Med. Chem. 2010, 53, 3227−3246.
(39) Kansy, M.; Senner, F.; Gubernator, K. Physicochemical high
throughput screening: parallel artificial membrane permeability assay
in the description of passive absorption processes. J. Med. Chem. 1998,
41, 1007−1010.
(40) Bjorkhem, I.; Meaney, S. Brain cholesterol: long secret life
behind a barrier. Arterioscler., Thromb., Vasc. Biol. 2004, 24, 806−815.
(41) Dietschy, J. M.; Turley, S. D. Cholesterol metabolism in the
central nervous system during early development and in the mature
animal. J. Lipid Res. 2004, 45, 1375−1397.
(42) Natali, F.; Siculella, L.; Salvati, S.; Gnoni, G. V. Oleic acid is a
potent inhibitor of fatty acid and cholesterol synthesis in C6 glioma
cells. J. Lipid Res. 2007, 48, 1966−1975.
(43) Prasanna, P.; Thibault, A.; Liu, L.; Samid, D. Lipid metabolism
as a target for brain cancer therapy: synergistic activity of lovastatin
and sodium phenylacetate against human glioma cells. J. Neurochem.
1996, 66, 710−716.
(44) Brown, R. C.; Cascio, C.; Papadopoulos, V. Pathways of
neurosteroid biosynthesis in cell lines from human brain: regulation of
dehydroepiandrosterone formation by oxidative stress and beta-
amyloid peptide. J. Neurochem. 2000, 74, 847−859.
(45) Bababeygy, S. R.; Polevaya, N. V.; Youssef, S.; Sun, A.; Xiong,
A.; Prugpichailers, T.; Veeravagu, A.; Hou, L. C.; Steinman, L.; Tse, V.
HMG-CoA reductase inhibition causes increased necrosis and
apoptosis in an in vivo mouse glioblastoma multiforme model.
Anticancer Res. 2009, 29, 4901−4908.
(46) Bouterfa, H. L.; Sattelmeyer, V.; Czub, S.; Vordermark, D.;
Roosen, K.; Tonn, J. C. Inhibition of Ras farnesylation by lovastatin leads
to downregulation of proliferation and migration in primary cultured
human glioblastoma cells. Anticancer Res. 2000, 20, 2761−2771.
(47) Chan, D. Y. L.; Chen, G. G.; Poon, W. S.; Liu, P. C. Lovastatin
sensitized human glioblastoma cells to TRAIL-induced apoptosis. J.
Neuro-Oncol. 2008, 86, 273−283.
(23) Gao, J.; Chu, X.; Qiu, Y.; Wu, L.; Qiao, Y.; Wu, J.; Li, D.
Discovery of potent inhibitor for farnesyl pyrophosphate synthase in
the mevalonate pathway. Chem. Commun. 2010, 46, 5340−5342.
(24) Mark, M.; Muller, P.; Maier, R.; Eisele, B. Effects of a novel 2,3-
oxidosqualene cyclase inhibitor on the regulation of cholesterol
biosynthesis in HepG2 cells. J. Lipid Res. 1996, 37, 148−158.
(25) Eisele, B.; Budzinski, R.; Muller, P.; Mark, M. Effects of a novel
̈
2,3-oxidosqualene cyclase inhibitor on cholesterol biosynthesis and
lipid metabolism in vivo. J. Lipid Res. 1997, 38, 564−575.
(26) Dollis, D.; Schuber, F. Effects of 2,3-oxidosqualene-lanosterol
cyclase inhibitor, 2,3:22,23-dioxidosqualene and 24,25-epoxycholester-
ol on the regulation of cholesterol biosynthesis in human hepatoma
cell line Hep-G2. Biochem. Pharmacol. 1994, 48, 49−57.
(27) Peffley, D. M.; Gayen, A. K.; Morand, O. H. Down-regulation of
3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA levels and
synthesis in syrian hamster C100 cells by the oxidosqualene cyclase
inhibitor [4′-(6-allyl-ethyl-amino-hexyloxy)-2′-fluoro-phenyl]-(4-bro-
mophenyl)-methanone (RO0488071): comparison to simvastatin.
Biochem. Pharmacol. 1998, 56, 439−449.
(28) Gardner, R. G.; Shan, H.; Matsuda, S. P. T.; Hampton, R. Y. An
oxysterol-derived positive signal for 3-hydroxy-3-methylglutaryl-CoA
reductase degradation in yeast. J. Biol. Chem. 2001, 276, 8681−8694.
(29) Dehmlow, H.; Ackermann, J.; Aebi, J.; Blum-Kaelin, D.;
Chucholowski, A.; Coassolo, P.; Hartman, P.; Kansy, M.; Maerki, H.
P.; Morand, O.; Von der Mark, E.; Panday, N.; Ruf, A.; Thoma, R.;
Schulz-Gasch, T. Oxidosqualene cyclase (OSC) inhibitors for the
treatment of dyslipidemia. Chimia 2005, 59, 72−76.
(30) Jolidon, S.; Polak-Wyss, A.; Hartman, P. G.; Guerry, P. 2,3-
Oxidosqualenelanosterol Cyclase: An Attractive Target for Antifungal
Drug Design. In Recent Advances in the Chemistry of Anti-Infective
Agents; Bentley, P. H., Ponsford, R, Eds.; Bookcraft Ltd.: Bath, U.K.,
1993; pp 223−233.
(31) Thoma, R.; Schulz-Gasch, T.; D’Arcy, B.; Benz, J.; Aebi, J.;
Dehmlow, H.; Hennig, M.; Stihle, M.; Ruf, A. Insight into steroid
scaffold formation from the structure of human oxidosqualene cyclase.
Nature 2004, 432, 118−122.
(32) Corey, E. J.; Fuchs, P. L. Synthetic method for conversion of formyl
groups into ethynyl groups. Tetrahedron Lett. 1972, 36, 3769−3772.
(33) Li, P.; Yamamoto, H. Amino acid salt catalyzed intramolecular
Robinson annulation. Chem. Commun. 2009, 36, 5412−5414.
(34) Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. A
greatly improved procedure for ruthenium tetroxide catalyzed
oxidations of organic compounds. J. Org. Chem. 1981, 46, 3936−3938.
(35) Brusselmans, K.; Timmermans, L.; Van de Sande, T.; Van
Veldhoven, P. P.; Guan, G.; Schechter, I.; Claessens, F.; Verhoeven,
G.; Swinnen, J. V. Squalene synthase, a determinant of Raft-associated
cholesterol and modulator of cancer cell proliferation. J. Biol. Chem.
2007, 282, 18777−18785.
(48) Jiang, Z.; Zheng, X.; Lytle, R. A.; Higashikubo, R.; Rich, K. M.
Lovastatin-induced up-regulation of the BH3-only protein, Bim, and
cell death in glioblastoma cells. J. Neurochem. 2004, 89, 168−178.
(49) Schmidt, F.; Groscurth, P.; Kermer, M.; Dichgans, J.; Weller, M.
Lovastatin and phenylacetate induce apoptosis, but not differentiation in
human malignant glioma cells. Acta Neuropathol. 2001, 101, 217−224.
(50) Tapia-Perez, J. H.; Kirches, E.; Mawrin, C.; Firsching, R.;
Schneider, T. Cytotoxic effect of different statins and thiazolidine-
diones on malignant glioma cells. Cancer Chemother. Pharmacol. 2011,
67, 1193−1201.
(51) Larner, J.; Jane, J.; Laws, E.; Packer, R.; Myers, C.; Shaffrey, M.
A phase I−II trial of lovastatin for anaplastic astrocytoma and
glioblastoma multiforme. Am. J. Clin. Oncol. 1998, 21, 579−583.
(52) Berger, Y.; Dehmlow, H.; Blum-Kaelin, D.; Kitas, E. A.; Loffler,
̈
B. M.; Aebi, J. D.; Juillerat-Jeanneret, L. Endothelin-converting-
enzyme-1 inhibition and growth of human glioblastoma cells. J. Med.
Chem. 2005, 48, 483−498.
5002
dx.doi.org/10.1021/jm300256z | J. Med. Chem. 2012, 55, 4990−5002