8926
R. A. Moss et al. / Tetrahedron Letters 42 (2001) 8923–8926
13. Dox, A. W.; Whitmore, F. C. Organic Synthesis, 2nd ed.;
Acknowledgements
Gilman, H.; Blatt, A. H., Eds.; Wiley: New York, 1941;
Coll. Vol. I, p. 5f.
We are grateful to the National Science Foundation for
financial support.
14. (a) Garigipati, R. S. Tetrahedron Lett. 1990, 31, 1969; (b)
Moss, R. A.; Ma, W.; Merrer, D. C.; Xue, S. Tetrahedron
Lett. 1995, 36, 8761.
References
15. Oldenziel, O. H.; Leusen, D.v.; Leusen, A. M.v. J. Org.
Chem. 1977, 42, 3114.
1. Reviews: (a) Moss, R. A. Advances in Carbene Chemistry;
Brinker, U. H., Ed.; JAI: Greenwich, 1994; Vol. 1, p. 59f;
(b) Bonneau, R.; Liu, M. T. H. Advances in Carbene
Chemistry; Brinker, U. H., Ed.; JAI: Stamford, 1998; Vol.
2, p. lf; (c) Platz, M. S. Advances in Carbene Chemistry;
Brinker, U. H., Ed.; JAI: Stamford, 1998; Vol. 2, p. 133f;
(d) Merrer, D. C.; Moss, R. A. Advances in Carbene
Chemistry; Brinker, U. H., Ed., Elsevier: Oxford, 2001;
Vol. 3, p. 53f.
16. Graham, W. H. J. Am. Chem. Soc. 1965, 87, 4396.
17. The isomers were not individually assigned, but their ratio
was ꢀ4:5 (hw) or 1.7:1 (thermolysis, 100°C).
18. Cf. Miyano, S.; Izumi, Y.; Hashimoto, H. Chem. Commun.
1978, 446.
19. Moss, R. A.; Johnson, L. A.; Merrer, D. C.; Lee, Jr., G.
E. J. Am. Chem. Soc. 1999, 121, 5940.
20. Jackson, J. E.; Soundararajan, N.; Platz, M. S.; Liu, M.
T. H. J. Am. Chem. Soc. 1988, 110, 5595.
2. (a) Liu, M. T. H.; Bonneau, R.; Wierlacher, S.; Sander, W.
J. Photochem. Photobiol., A: Chem. 1994, 84, 133; (b)
Wierlacher, S.; Sander, W.; Liu, M. T. H. J. Am. Chem.
Soc. 1993, 115, 8943.
21. (a) Moss, R. A.; Xue, S.; Ma, W.; Ma, H. Tetrahedron Lett.
1997, 38, 4379; (b) Moss, R. A.; Merrer, D. C. Tetrahedron
Lett. 1998, 39, 8067.
22. The slopes of the correlations represent the bimolecular
rate constants for the formation of the carbene–pyridine
ylide: k2=8.7×108 M−1 s−1 (3), and k2=3.2×108 M−1 s−1 (4).
23. (a) Bonneau, R.; Liu, M. T. H.; Rayez, M. T. J. Am. Chem.
Soc. 1989, 111, 5973; (b) Liu, M. T. H.; Bonneau, R. J.
Am. Chem. Soc. 1989, 111, 6873; (c) LaVilla, J. A.;
Goodman, J. L. J. Am. Chem. Soc. 1989, 111, 6877; (d) Liu,
M. T. H.; Bonneau, R. J. Am. Chem. Soc. 1996, 118, 8098.
24. Optimizations utilized Gaussian 94, Revision E.2. with
default convergence criteria: Gaussian, Inc.; Pittsburgh,
PA, 1995. DFT computations employed Becke’s three
parameter hybrid method using the LYP correlation func-
tional: Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
Transition states were confirmed by frequency calculations
that displayed only one negative frequency.
25. We compute Ea for the conversion of cis-3 to trans-3 as
1.8 kcal/mol, with an energy difference of only 0.3 kcal/mol
favoring trans-3.
26. For carbene 1, Ea (1,2-H) is computed at 5.5 kcal/mol and
Ea (1,2-Ph) at 9.5 kcal/mol.4 The 6.5% of 1,2-Ph migration
observed for photochemically generated 13 may reflect
rearrangement occurring in the excited diazirine precursor
of the carbene.6
3. Merrer, D. C.; Moss, R. A.; Liu, M. T. H.; Banks, J. T.;
Ingold, K. U. J. Org. Chem. 1998, 63, 3010.
4. Keating, A. E.; Garcia-Garibay, M. A.; Houk, K. N. J.
Phys. Chem. A 1998, 102, 8467.
5. Liu, M. T. H.; Bonneau, R. J. Am. Chem. Soc. 1990, 112,
3915.
6. Moss, R. A.; Ma, W. Tetrahedron Lett. 1999, 40, 5101.
7. On bystander effects, see: Nickon, A. Acc. Chem. Res.
1993, 26, 84. Kenar, J. A.; Nickon, A. Tetrahedron 1997,
53, 14871.
8. Migration of Ph in 1 is opposed by a (computed) barrier
of 9.5 kcal/mol, whereas the migration of H in CH3CCl is
opposed by a barrier of 11.5 kcal/mol.4 However, the Ph
bystander of carbene 1 lowers Ea for the 1,2-H shift from
11.5 to 5.5 kcal/mol.4
9. (a) Carey, F. A.; Sundberg, R. J. Advanced Organic
Chemistry, 4th ed.; Kluwer Academic/Plenum: New York,
2000; p. 284f and references cited therein; (b) Hahn, R. C.;
Corbin, T. F.; Shecter, H. J. Am. Chem. Soc. 1968, 90,
3404; (c) Kerber, R. C.; Hsu, C.-M. J. Am. Chem. Soc.
1973, 95, 3239; (d) Moss, R. A.; Munjal, R. C. Tetrahedron
Lett. 1980, 21, 1221.
10. (a) March, J. Advanced Organic Chemistry, 4th ed.; Wiley:
New York, 1992; pp. 169–170, 323–324 and references cited
therein; (b) See also Richey, H. G. In Carbonium Ions;
Olah, G. A.; Schleyer, P.v. R., Eds.; Wiley: New York,
1972; Vol. III, p. 1201f.
27. A B3LYP/6-31G* calculation carried out for Ph2CHCCl
(2) using Gaussian 98.A7 gave Ea=7.40 kcal/mol (with
zero point energy correction) for the 1,2-H shift. This value
is higher than Ea (1), calculated4 at 5.5 kcal/mol, consistent
with the suggestion4 that the second phenyl group of 2 leads
to steric interactions between the gem-C2 phenyl groups,
preventing increased stabilization of the 1,2-H shift transi-
tion state. The experimental rate constants (Table 1) are
in a sequence consistent with these computed Ea’s.
28. An additional Cy bystander effect is apparent in the 5.5
kcal/mol computed reduction in Ea for 1,2-Cy migration
of carbene 4, relative to carbene 3. The second Cy
substituent of 4 significantly stabilizes the transition state
for migration of the other Cy group.
11. (a) Moss, R. A.; Fantina, M. E. J. Am. Chem. Soc. 1978,
100, 6788; (b) Moss, R. A.; Vezza, M.; Guo, W.; Munjal,
R. C.; Houk, K. N.; Rondan, N. G. J. Am. Chem. Soc.
1979, 101, 5088.
12. |R+=−0.38 for Cy11b versus −0.30 for Ph. Ehrenson, S.;
Brownlee, R. T. C.; Taft, R. W. Prog. Phys. Org. Chem.
1973, 10, 1. In a more recent evaluation, |R+(Cy)=−0.27,
|
R
+(Ph)=−0.17. Charton, M. Prog. Phys. Org. Chem.
1981, 13, 119.