evaporation, the crude product was purified by column chromatography
on silica gel (eluent: hexane/toluene = 5:1, v/v). After removal of the
solvents by evaporation, the resulting solid was washed with AcOEt
and hexane to afford 4 as a light yellow solid (yield = 0.78 g, 73%).
1H NMR (400 MHz, CDCl3): δ 7.92 (dd, J = 7.6 Hz, 1.2 Hz, 2H), 7.79
(d, J = 7.6 Hz, 2H), 7.65 (ddd, J = 7.6 Hz, 7.6 Hz, 1.6 Hz, 2H), 7.37 (ddd,
J = 7.6 Hz, 7.6 Hz, 1.2 Hz, 2H), 7.31-7.22 (m, 6H), 7.07 (m, 4H), 6.97
(dd, J = 8.0 Hz, 1.2 Hz, 2H), 6.84 (s, 2H), 6.70 (d, J = 2.0 Hz, 2H), 6.56
(d, J = 8.0 Hz, 2H), 2.26 (sep., J = 6.8 Hz, 2H), 2.23 (s, 6H), 0.89 (d,
J = 6.8 Hz, 12H). 13C NMR (100 MHz, CDCl3): δ 152.60, 146.75,
143.87, 141.37, 140.82, 139.96, 132.24, 130.16, 129.72, 128.65, 127.47,
126.12, 125.24, 124.51, 124.33, 114.03, 56.94, 35.23, 24.05, 20.86. MS
(MALDI-TOF): m/z calcd 715.34 [M]+; found 715.42. Anal. calcd (%) for
C51H46BNS: C 85.58, H 6.48, N 1.96; found: C 85.66, H 6.51, N 2.01.
Photophysical Measurements: Organic thin films for photophysical
measurements were deposited under high vacuum (≈7 × 10−5 Pa)
onto quartz or Si(100) substrates. UV−vis absorption and PL spectra
were measured with a V-670 spectrometer (Jasco) and a FP-8600
spectrophotometer (Jasco), respectively. The absolute PL quantum yields
were determined using an ILF-835 integrating sphere system (Jasco).
The transient PL decay measurements for the thin films were performed
using a C11367 Quantaurus-tau fluorescence lifetime spectrometer
(Hamamatsu Photonics; λ = 340 nm, pulse width = 100 ps, and repetition
rate = 20 Hz) under N2, and a C9300 streak camera (Hamamatsu
Photonics) with a N2 gas laser (λ = 337 nm, pulse width = 500 ps, and
repetition rate = 20 Hz) under vacuum (<4 × 10−1 Pa).
Fabrication and Evaluation of OLED Devices: ITO-coated glass
substrates were cleaned with detergent, deionized water, acetone, and
isopropanol. The substrates were then subjected to UV–ozone treatment
for 30 min before being loaded into an E-200 vacuum evaporation
system (ALS Technology). The organic layers and a cathode Al layer were
thermally evaporated on the substrates under vacuum (<6 × 10−5 Pa) with
a deposition rate of <0.3 nm s−1 through a shadow mask, defining a pixel
size of 0.04 cm2. The thickness and deposition rate were monitored in situ
during deposition by an oscillating quartz thickness monitor. The J–V–L
characteristics of the fabricated OLEDs were measured using a Keithley
2400 source meter and a CS-2000 spectroradiometer (Konica Minolta).
[1] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature
2012, 492, 234.
[2] a) A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki,
C. Adachi, Appl. Phys. Lett. 2011, 98, 083302; b) S. Y. Lee, T. Yasuda,
H. Nomura, C. Adachi, Appl. Phys. Lett. 2012, 101, 093306.
[3] For reviews, see: a) Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen,
C. Zheng, L. Zhang, W. Huang, Adv. Mater. 2014, 26, 7931;
b) M. Y. Wong, E. Zysman-Colman, Adv. Mater. 2017, 29, 1605444;
c) Y. Im, M. Kim, Y. J. Cho, J.-A. Seo, K. S. Yook, J. Y. Lee, Chem.
Mater. 2017, 29, 1946; d) N. Aizawa, I. S. Park, T. Yasuda, AAPPS
Bull. 2016, 26, 9.
[4] a) M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley,
M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151; b) S. Reineke,
F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, K. Leo,
Nature 2009, 459, 234; c) T. Fleetham, G. Li, J. Li, Adv. Mater. 2017,
29, 1601861.
[5] a) J. Li, T. Nakagawa, J. MacDonald, Q. Zhang, H. Nomura,
H. Miyazaki, C. Adachi, Adv. Mater. 2013, 25, 3319; b) Q. Zhang,
H. Kuwabara, W. J. PotscavageJr., S. Huang, Y. Hatae, T. Shibata,
C. Adachi, J. Am. Chem. Soc. 2014, 136, 18070; c) S. Wang, X. Yan,
Z. Cheng, H. Zhang, Y. Liu, Y. Wang, Angew. Chem., Int. Ed. 2015,
54, 13068; d) C. Xie, X. Li, D. Chen, Z. Wang, X. Cai, D. Chen,
Y. Li, K. Liu, Y. Cao, S.-J. Su, Adv. Mater. 2016, 28, 181; e) W. Zeng,
H.-Y. Lai, W.-K. Lee, M. Jiao, Y.-J. Shiu, C. Zhong, S. Gong, T. Zhou,
G. Xie, M. Sarma, K.-T. Wong, C.-C. Wu, C. Yang, Adv. Mater.
2018, 30, 1704961; f) R. Furue, K. Matsuo, Y. Ashikari, H. Ooka,
N. Amanokura, T. Yasuda, Adv. Opt. Mater. 2018, 6, 1701147.
[6] a) H. Kaji, H. Suzuki, T. Fukushima, K. Shizu, K. Suzuki, S. Kubo,
T. Komino, H. Oiwa, F. Suzuki, A. Wakamiya, Y. Murata, C. Adachi,
Nat. Commun. 2015, 6, 8476; b) K. Suzuki, S. Kubo, K. Shizu,
T. Fukushima, A. Wakamiya, Y. Murata, C. Adachi, H. Kaji,
Angew. Chem., Int. Ed. 2015, 54, 15231; c) D. R. Lee, M. Kim,
S. K. Jeon, S.-H. Hwang, C. W. Lee, J. Y. Lee, Adv. Mater. 2015, 27,
5861; d) W.-L. Tsai, M.-H. Huang, W.-K. Lee, Y.-J. Hsu, K.-C. Pan,
T.-H. Huang, H.-C. Ting, M. Sarma, Y.-Y. Ho, H.-C. Hu, C.-C. Chen,
M.-T. Lee, K.-T. Wong, C.-C. Wu, Chem. Commun. 2015, 51, 13662;
e) P. Rajamalli, N. Senthilkumar, P. Gandeepan, P.-Y. Huang,
M.-J. Huang, C.-Z. Ren-Wu, C.-Y. Yang, M.-J. Chiu, L.-K. Chu,
H.-W. Lin, C.-H. Cheng, J. Am. Chem. Soc. 2016, 138, 628; f) K. Wu,
T. Zhang, L. Zhan, C. Zhong, S. Gong, N. Jiang, Z.-H. Lu, C. Yang,
Chem. – Eur. J. 2016, 22, 10860; g) J. Lee, N. Aizawa, M. Numata,
C. Adachi, T. Yasuda, Adv. Mater. 2017, 29, 1604854; h) M. Liu,
R. Komatsu, X. Cai, K. Hotta, S. Sato, K. Liu, D. Chen, Y. Kato,
H. Sasabe, S. Ohisa, Y. Suzuri, D. Yokoyama, S.-J. Su, J. Kido,
Chem. Mater. 2017, 29, 8630; i) T.-L. Wu, M.-J. Huang, C.-C. Lin,
P.-Y. Huang, T.-Y. Chou, R.-W. Chen-Cheng, H.-W. Lin, R.-S. Liu,
C.-H. Cheng, Nat. Photonics 2018, 12, 235.
[7] a) Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi, Nat.
Photonics 2014, 8, 326; b) S. Hirata, Y. Sakai, K. Masui, H. Tanaka,
S. Y. Lee, H. Nomura, N. Nakamura, M. Yasumatsu, H. Nakanotani,
Q. Zhang, K. Shizu, H. Miyazaki, C. Adachi, Nat. Mater. 2015, 14,
330; c) M. Numata, T. Yasuda, C. Adachi, Chem. Commun. 2015,
51, 9443; d) J. W. Sun, J. Y. Baek, K.-H. Kim, C.-K. Moon, J.-H. Lee,
S.-K. Kwon, Y.-H. Kim, J.-J. Kim, Chem. Mater. 2015, 27, 6675;
e) D. Zhang, M. Cai, Y. Zhang, D. Zhang, L. Duan, Mater. Horiz.
2016, 3, 145; f) T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura,
S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, T. Ikuta, Adv. Mater. 2016,
28, 2777; g) S. Y. Lee, C. Adachi, T. Yasuda, Adv. Mater. 2016, 28,
4626; h) T.-A. Lin, T. Chatterjee, W.-L. Tsai, W.-K. Lee, M.-J. Wu,
M. Jiao, K.-C. Pan, C.-L. Yi, C.-L. Chung, K.-T. Wong, C.-C. Wu, Adv.
Mater. 2016, 28, 6976; i) I. S. Park, J. Lee, T. Yasuda, J. Mater. Chem. C
2016, 4, 7911; j) I. S. Park, H. Komiyama, T. Yasuda, Chem. Sci. 2017,
8, 953; k) P. Rajamalli, N. Senthilkumar, P.-Y. Huang, C.-C. Ren-Wu,
H.-W. Lin, C.-H. Cheng, J. Am. Chem. Soc. 2017, 139, 10948.
[8] C. Murawski, K. Leo, M. C. Gather, Adv. Mater. 2013, 25, 6801.
Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
Acknowledgements
I.S.P. and K.M. contributed equally to this work. This work was supported
in part by Grant-in-Aid for JSPS KAKENHI Grant Nos. JP17K17937 (K.M.)
and JP18H02048 (T.Y.), the Research Foundation for Opto-Science
and Technology (T.Y.), and the Hoso Bunka Foundation (T.Y.). I.S.P.
acknowledges the support from the Rotary Yoneyama Scholarships.
The authors are grateful for the support of the Cooperative Research
Program “Network Joint Research Center for Materials and Devices.” The
computations were mainly performed using the computer facilities at
Research Institute for Information Technology, Kyushu University.
Conflict of Interest
The authors declare no conflict of interest.
Keywords
dibenzoheteraborins, electroluminescence, organic light-emitting diodes,
spin conversion, thermally activated delayed fluorescence
Received: March 22, 2018
Revised: May 28, 2018
Published online:
©
Adv. Funct. Mater. 2018, 1802031
1802031 (11 of 12)
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim