include poor selectivity,8 particularly in the presence of
fluoride or acetate, and the fact that the detection of cyanide
cannot be performed in aqueous solution in some cases.
Fluorescent probes for cyanide were reported,9 but fluores-
cence turn-on detection still remains rare. Thus, there remains
a need for improved sensing ensembles for cyanide. In this
paper, we will report a fluorescence turn-on sensing ensemble
for cyanide in aqueous solution by making use of the
aggregation-induced-emission (AIE) feature of silole (sila-
cyclopentadiene) compounds.
Scheme 1. (A) Chemical Structure of Silole 1 with an
Ammonium Group; (B) Chemical Structure of Compound 2 and
the Reaction with Cyanide; (C) Illustration of the Design
Rationale for the Fluorescence Turn-on Detection of Cyanide by
Making Use of the AIE Feature of Silole Compounds
It is known that silole derivatives are weakly fluorescent
in solution but become highly fluorescent after aggregation.
This intriguing phenomenon was referred to as aggregation-
induced enhanced emission (AIE) first reported by Tang,
Zhu, and their co-workers in 2001.10 Chemo-/biosensors have
been reported on the basis of the AIE features of silole and
relevant compounds.11 We have recently established a
fluorescence turn-on detection of heparin in serum,12 DNA
and label-free fluorescence nuclease assay,13 and continuous
on-site label-free ATP fluorometric assay14 by taking ad-
vantage of the AIE feature of silole compounds. The present
sensing ensemble toward cyanide contains silole 1 and
compound 2 with a trifluoroacetylamino group. The design
rationale is illustrated in Scheme 1 and is explained as
follows: (1) silole 1 with a positive ammonium group shows
weak fluorescence in aqueous solution but in the presence
of an amphiphilic compound with a negatively charged group
aggregation would occur due to the intermolecular electro-
static and hydrophobic interactions schematically shown in
Scheme 1;15 (2) cyanide can easily react with the trifluoro-
acetylamino group16 in compound 2, leading to formation
of an amphiphilic compound with a negative headgroup. As
a result, it is anticipated that coaggregation of silole 1 and
compound 2 would occur in aqueous solution after addition
of cyanide, and accordingly, the fluorescence of silole 1
would increase. The results show that a fluorescence turn-
on detection of cyanide in aqueous solution can be estab-
lished with the ensemble of silole 1 and compound 2.
Silole 1 was prepared according to a previous report.13,17
Compound 2 was obtained simply by the reaction of
4-hexylanine with trifluoroacetic anhydride (see the Sup-
porting Information). Silole 1 can be dissolved in pure water,
and the solution exhibits rather weak fluorescence as
expected. Compound 2 is not soluble in water, but it can be
dissolved in DMSO. A clear solution of 1 (7.5 × 10-5 M)
and 2 (4.0 × 10-4 M) in a mixture of DMSO and water
(8) Gimeno, N.; Li, X. E.; Durrant, J. R.; Vilar, V. Chem.sEur. J. 2008,
14, 3006–3012.
(9) (a) Anzenbacher, P.; Tyson, D. S.; Jursikova, K.; Castellano, F. N.
J. Am. Chem. Soc. 2002, 124, 6232–6233. (b) Badugua, R.; Lakowicza,
J. R.; Geddes, C. D. Dyes Pigments 2005, 64, 49–55. (c) Badugu, R.;
Lakowicz, J. R.; Geddes, C. D. J. Am. Chem. Soc. 2005, 127, 3635–3641.
(d) Jin, W. J.; Ferna´ndez-Argu¨elles, M. T.; Costa-Ferna´ndez, J. M.; Sanz-
Medel, A. Chem. Commun. 2005, 883–885. (e) Yang, Y.-K.; Tae, J. S.
Org. Lett. 2006, 8, 5721–5723. (f) Chen, C.-L; Chen, Y.-H; Chen, C.-Y;
Sun, S.-S. Org. Lett. 2006, 8, 5053–5056. (g) Ekmekci, Z.; Yilmaz, M. D.;
Akkaya, E. U. Org. Lett. 2008, 10, 461–464. (h) Zeng, Q.; Cai, P.; Li, Z.;
Qin, J.; Tang, B. Z. Chem. Commun. 2008, 1094–1096. (i) Li, Z. A.; Lou,
X. D.; Yu, H. B.; Li, Z.; Qin, J. G. Macromolecules 2008, 41, 7433–7439.
(j) Lee, K.-S.; Kim, H.-J.; Kim, J.-H.; Shin, I.; Hong, J.-I. Org. Lett. 2008,
10, 49–51. (k) Touceda-Varela, A.; Stevenson, E. I.; Galve-Gasio´n, J. A.;
Dryden, D. T. F.; Mareque-Rivas, J. C. Chem. Commun. 2008, 1998–2000.
(l) Kwona, S. K.; Kou, S.; Kim, H. N.; Chen, X. Q.; Hwang, H.; Nama,
S.-W.; Kim, S. H.; Swamy, K. M. K.; Park, S.; Yoon, J. Tetrahedron Lett.
2008, 49, 4102–4105.
(10) Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.;
Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z.
Chem. Commun. 2001, 1740–1741.
(11) (a) Chen, J.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y.; Lo, S. M. F.;
Williams, I. D.; Zhu, D.; Tang, B. Chem. Mater. 2003, 15, 1535–1546. (b)
Toal, S. J.; Douglas Magde, D.; Trogler, W. C. Chem Commun. 2005, 5465–
5467. (c) Dong, Y. Q.; Lam, J. W. Y.; Qin, A. J.; Li, Z.; Liu, J. Z.; Sun,
J. Z.; Dong, Y. P.; Tang, B. Z. Chem. Phys. Lett. 2007, 446, 124–127. (d)
Tong, H.; Hong, Y. N.; Dong, Y. Q.; Hussler, M.; Li, Z.; Lam, J. W. Y.;
Dong, Y. P.; Sung, H. H.-Y.; Williams, I. D.; Tang, B, Z. J. Phys. Chem.
B 2007, 111, 11817–11823. (e) Hong, Y. N.; Haussler, M.; Lam, J. W. Y.;
Li, Z.; Sin, K. K.; Dong, Y. Q.; Tong, H.; Liu, J. Z.; Qin, A. J.; Renneberg,
R.; Tang, B. Z. Chem.sEur. J. 2008, 14, 6428–6437. (f) Ning, Z. J.; Chen,
Z.; Zhang, Q.; Yan, Y. L.; Qian, S. X.; Cao, Y.; Tian, H. AdV. Funct. Mater.
2007, 17, 3799–3807. (g) Satrijo, A.; Swager, T. M. J. Am. Chem. Soc.
2007, 129, 16020–16028. (h) Liu, L.; Zhang, G. X.; Xiang, J. F.; Zhang,
D. Q.; Zhu, D. B. Org. Lett. 2008, 10, 458–461.
(15) The critical micelle concentration (CMC) of 2 after reaction with
ca. 1.0 equiv of CN- was estimated to be 0.35 mM. For the fluorescence
measurements, the concentration of 2 was 0.4 mM. Therefore, it is probable
that the reaction adduct of 2 with CN- forms micelles in aqueous solution
and the hydrophobic part of 1 may enter into the hydrophobic core of the
micelles. Moreover, such micelles may be further interconnected due to
the electrostatic interactions between the ammonium group in 1 and anionic
part of the reaction adduct.
(16) (a) Kim, Y. K.; Lee, Y.-H.; Lee, H.-Y.; Kim, M. K.; Cha, G. S.;
Ahn, K. H. Org. Lett. 2003, 5, 4003–4006. (b) Chung, Y. M; Raman, B.;
Kim, D.-S.; Ahn, K. H. Chem. Commun. 2006, 186–188. (c) Kim, D. -S.;
Miyaji, H.; Chang, B.-Y.; Park, S.-M.; Ahn, K. H. Chem. Commun. 2006,
3314–3316. (d) Kim, D.-S; Ahn, K. H. J. Org. Chem. 2008, 73, 6831–
6834. (e) Miyaji, H.; Kim, D.-S.; Chang, B.-Y.; Park, E.; Park, S.-M.; Ahn,
Y. H. Chem. Commun. 2008, 753–755.
(12) Wang, M.; Zhang, D. Q.; Zhang, G. X.; Zhu, D. B. Chem. Commun.
2008, 4469–4471.
(13) Wang, M.; Zhang, D. Q.; Zhang, G. X.; Tang, Y. L.; Wang, S.;
Zhu, D. B. Anal. Chem. 2008, 80, 6443–6448.
(14) Zhao, M. C.; Wang, M.; Liu, H. J.; Liu, D. S.; Zhang, G. X.; Zhang,
D. Q.; Zhu, D. B. Langmuir 2009, 25, 676–678.
(17) Toal, S. J.; Jones, K. A.; Magde, D.; Trogler, W. C. J. Am. Chem.
Soc. 2005, 127, 11661–11665
.
1944
Org. Lett., Vol. 11, No. 9, 2009