Published on Web 12/29/2001
Erythropoietin Mimetics Derived from Solution Phase
Combinatorial Libraries
Joel Goldberg, Qing Jin, Yves Ambroise, Shigeki Satoh, Joel Desharnais,
Kevin Capps, and Dale L. Boger*
Contribution from the Department of Chemistry and The Skaggs Institute for Chemical Biology,
The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
Received August 2, 2001
Abstract: The erythropoietin receptor (EPOr) is activated by ligand-induced homodimerization, which leads
to the proliferation and differentiation of erythroid progenitors. Through the screening of combinatorial libraries
of dimeric iminodiacetic acid diamides, novel small molecule binders of EPOr were identified in a protein
binding assay. Evaluation of a series of analogues led to optimization of binding subunits, and these were
utilized in the synthesis of higher order dimer, trimer, and tetramer libraries. Several of the most active
EPOr binders were found to be partial agonists and induced concentration-dependent proliferation of an
EPO-dependent cell line (UT-7/EPO) while having no effect on a cell line lacking the EPOr (FDC-P1). An
additional compound library, based on a symmetrical isoindoline-5,6-dicarboxylic acid template and including
the optimized binding subunits, was synthesized and screened leading to the identification of additional
EPO mimetics.
Introduction
fied through phage display or the random screening of com-
pound libraries. Though successful, the limited number of
Ligand-induced receptor dimerization or oligomerization has
emerged as a general mechanism for signal transduction,1 and
important members of several receptor superfamilies are acti-
vated by this process (Figure 1).2-5 Many of these receptors
appear to bind their ligands using only small clusters of residues
for a majority of the binding interaction,6-8 which has led to
the expectation that smaller molecules may be capable of
inducing their activation. Unlike the discovery of small molecule
antagonists of biological activity functioning through the
disruption of protein-protein interactions, such agonists must
function by promoting a productive protein-protein interaction.
Recently, the first peptide,7-9 as well as nonpeptide,10-12
agonists promoting receptor homodimerization have been identi-
examples, the size of the agonists,7-9,12 or questionable nature
of the receptor activation10,11 have not yet provided a generaliz-
able approach to the discovery or development of such small
molecule receptor agonists.
The erythropoietin receptor (EPOr)13 is a member of the
cytokine receptor superfamily, whose members share similar
structural motifs14 and mechanisms of signal transduction, in
which activation is believed to be achieved through an ap-
propriately oriented ligand-induced homodimerization.15-17
EPOr’s endogenous high affinity ligand, erythropoietin (EPO),
is a 34 kDa glycoprotein hormone that controls red blood cell
production by promoting the proliferation and differentiation
of erythroid progenitors.18 Recombinant EPO is one of the most
successful biotechnology products19 and is currently used to treat
anemias stemming from kidney failure, cancer chemotherapy,
and AIDS.20 Moreover, clinical observations on patients receiv-
(1) Hinterding, K.; Alonso-Diaz, D.; Waldmann, H. Angew. Chem., Int. Ed.
1998, 37, 688. Klemm, J. D.; Schreiber, S. L.; Crabtree, G. R. Annu. ReV.
Immunol. 1998, 16, 569. Heldin, C.-H. Cell 1995, 80, 213.
(2) Ullrich, A.; Schlessinger, J. Cell 1990, 61, 203.
(3) Moutoussamy, S.; Kelly, P. A.; Finidori, J. Eur. J. Biochem. 1998, 255, 1.
(4) Massague, J.; Attisano, L.; Wrana, J. L. Trends Cell Biol. 1994, 4, 172.
Lemmon, M. A.; Schlessinger, J. Trends Biochem. Sci. 1994, 19, 459.
(5) Smith, C. A.; Farrah, T.; Goodwin, R. G. Cell 1994, 76, 959.
(6) Wells, J. A. Science 1996, 273, 449. Reineke, U.; Schneider-Mergener, J.
Angew. Chem., Int. Ed. 1998, 37, 769.
(12) Qureshi, S. A.; Kim, R. M.; Konteatis, Z.; Biazzo, D. E.; Motamedi, H.;
Rodrigues, R.; Boice, J. A.; Calaycay, J. R.; Bednarek, M. A.; Griffin, P.;
Gao, Y.-D.; Chapman, K.; Mark, D. F. Proc. Natl. Acad. Sci. U.S.A. 1999,
96, 12156.
(7) Wrighton, N. C.; Farrell, F. X.; Chang, R.; Kashyap, A. K.; Barbone, F.
P.; Mulcahy, L. S.; Johnson, D. L.; Barrett, R. W.; Jolliffe, L. K.; Dower,
W. J. Science 1996, 273, 458.
(8) Livnah, O.; Stura, E. A.; Johnson, D. L.; Middleton, S. A.; Mulcahy, L.
S.; Wrighton, N. C.; Dower, W. J.; Jolliffe, L. K.; Wilson, I. A. Science
1996, 273, 464.
(13) Syed, R. S.; Reid, S. W.; Li, C.; Cheetham, J. C.; Aoki, K. H.; Liu, B.;
Zhan, H.; Osslund, T. D.; Chirino, A. J.; Zhang, J.; Finer-Moore, J.; Elliott,
S.; Sitney, K.; Katz, B. A.; Matthews, D. J.; Wendoloski, J. J.; Egrie, J.;
Stroud, R. M. Nature 1998, 395, 511.
(14) Bazan, F. J. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 6934.
(15) Boger, D. L.; Goldberg, J. Bioorg. Med. Chem. 2001, 9, 557.
(16) Touw, I. P.; De Koning, J. P.; Ward, A. C.; Hermans, M. H. A. Mol. Cell.
Endocrinol. 2000, 160, 1.
(9) Cwirla, S. E.; Balasubramanian, P.; Duffin, D. J.; Wagstrom, C. R.; Gates,
C. M.; Singer, S. C.; Davis, A. M.; Tansik, R. L.; Mattheakis, L. C.; Boytos,
C. M.; Schatz, P. J.; Baccanari, D. P.; Wrighton, N. C.; Barrett, R. W.;
Dower, W. J. Science 1997, 276, 1696. Kimura, T.; Kaburaki, H.;
Miyamoto, S.; Katayama, J.; Watanabe, Y. J. Biochem. 1997, 122, 1046.
(10) Tian, S.-S.; Lamb, P.; King, A. G.; Miller, S. G.; Kessler, L.; Luengo, J.
I.; Averill, L.; Johnson, R. K.; Gleason, J. G.; Pelus, L. M.; Dillon, S. B.;
Rosen, J. Science 1998, 281, 257.
(17) Wilson, I. A.; Jolliffe, L. K. Curr. Opin. Struct. Biol. 1999, 9, 696. Livnah,
O.; Stura, E. A.; Middleton, S. A.; Johnson, D. L.; Jolliffe, L. K.; Wilson,
I. A. Science 1999, 283, 987. Remy, I.; Wilson, I. A.; Michnick, S. W.
Science 1999, 283, 990. See also: Constantinescu, S. N.; Keren, T.;
Socolovsky, M.; Nam, H.; Henis, Y. I.; Lodish, H. F. Proc. Natl. Acad.
Sci. U.S.A. 2001, 98, 4379.
(11) Kimura, T.; Kaburaki, H.; Tsujino, T.; Ikeda, Y.; Kato, H.; Watanabe, Y.
FEBS Lett. 1998, 428, 250.
(18) Lacombe, C.; Mayeux, P. Haematologica 1998, 83, 724.
(19) Annual worldwide sales, $4 billion: Chem. Eng. News 2000, 77, 17.
9
544 VOL. 124, NO. 4, 2002 J. AM. CHEM. SOC.
10.1021/ja0118789 CCC: $22.00 © 2002 American Chemical Society