7928
M. A. Zhura6el, S. T. Nguyen / Tetrahedron Letters 42 (2001) 7925–7928
Scheme 1.
(Scheme 1). Thus, 2-hydroxy-5-tert-butylboronic acid
(6) was prepared and reacted with Mes*Br (7a) and
9-bromoanthracene (7b) using method A (Scheme 1).
However, this approach also did not yield the desired
products. Formation of small amounts of 8a was
observed by GC/MS but no 8b was detected. Analysis
of the reaction mixtures shows mostly starting materials
and, in the case of 7b, also some anthracene. We note
that Grubbs and co-workers have been able to prepare
2-(9-anthracenyl)phenol via Kumada coupling under
extended reaction time (4 days, THF reflux) albeit in
moderate yield.8,13
sen, E. N.; Pfaltz, A.; Yamamoto, H., Eds. Cyclopropa-
nation and CꢀH insertion with Cu; Springer: New York,
1999; Vol. 2, pp. 513–538.
2. Lydon, K. M.; McKervey, M. A. In Comprehensive
Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A.;
Yamamoto, H., Eds. Cyclopropanation and CꢀH inser-
tion with Rh; Springer: New York, 1999; Vol. 2, pp.
539–580.
3. Charette, A. B.; Lebel, H. In Comprehensive Asymmetric
Catalysis; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H.,
Eds. Cyclopropanation and CꢀH insertion with metals
other than Cu and Rh; Springer: New York, 1999; Vol. 2,
pp. 581–603.
In conclusion, we have shown that the Suzuki coupling
between a variety of arylboronic acids and 3-bromosal-
icylaldehydes is a general and direct method to access
several functionalized 3-arylsalicylaldehydes. While
highly efficient in the case of sterically hindered sub-
stituents, the reaction is unsuccessful when very bulky
aryls such as Mes* are used. A parallel strategy using
the Thermolyne 12-well heating block leads to a signifi-
cant reduction of time in the search for optimized
reaction conditions.
4. Uchida, T.; Irie, R.; Katsuki, T. Tetrahedron 2000, 56,
3501–3509.
5. Uchida, T.; Irie, R.; Katsuki, T. Synlett 1999, 1793–1795.
6. Uchida, T.; Irie, R.; Katsuki, T. Synlett 1999, 1163–1165.
7. Jacobsen, E. N. In Catalytic Asymmetric Synthesis;
Ojima, I., Ed.; VCH: New York, 1993; pp. 159–202.
8. Wang, C.; Friedrich, S.; Younkin, T. R.; Li, R. T.;
Grubbs, R. H.; Bansleben, D. A.; Day, M. W.
Organometallics 1998, 17, 3149–3151.
9. Tsuji, J. Palladium Reagents and Catalysts: Innovations in
Organic Synthesis; Wiley: New York, 1995.
10. Lam, F.; Xu, J. X.; Chan, K. S. J. Org. Chem. 1996, 61,
8414–8418.
Acknowledgements
11. Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000,
122, 4020–4028.
12. Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L.
J. Am. Chem. Soc. 1999, 121, 9550–9561.
13. Bansleben, D. A.; Connor, E. F.; Grubbs, R. H.; Hender-
son, J. I.; Younkin, T. R.; Nadjadi, A. R. Supported
catalysts and olefin polymerization processes utilizing
same. In PCT Int. Appl. (Cryovac, Inc., USA): WO
0056787, 2000; p. 36 (59 pp); CAN133:267225.
14. Li, G. Y. Angew. Chem., Int. Ed. Engl. 2001, 40, 1513–
1516.
We thank Dr. George Y. Li (DuPont Central Research)
for providing us with samples of (Pd(PtBu2(OH))2Cl)2
and (Pd(PtBu2(OH))Cl2)2.14 Financial support from the
Dreyfus Foundation, the DuPont Company, and the
Packard Foundation is gratefully acknowledged.
References
1. Pfaltz, A. In Comprehensive Asymmetric Catalysis; Jacob-