fractometer facility is acknowledged. VSSK thanks the CSIR
for fellowship.
Notes and references
†
1 was synthesised from 4,4A-diphenylbenzophenone using standard
reagents and reaction conditions. FT-IR: 1668, 763 cm21. 1H NMR: d 6.45
(d, J 10 Hz, 2 H), 7.20–7.50 (m, 12 H), 7.50–7.70 (m, 8 H). For synthesis
of 3, see ref. 5.
‡ Crystal data: (1)·(CH3OCH2CH2OCH3)0.5: (C30H22O)·(C4H10O2)0.5, C2/
c, a = 25.464(5), b = 19.751(4), c = 9.770(2) Å, b = 97.72(3)°, Z = 8,
V = 4868.9(17) Å3, 5886 unique reflections (3 < 2q < 57°), final R =
0.0522 for 1352 observed reflections [I > 2s(I)] for 308 parameters. Data
collected on Enraf-Nonius MACH-3 diffractometer at 293(2) K using Mo-
Ka X-rays (l 0.71073 Å) in the w scan mode. CCDC 172238. (1)·(n-
Fig. 3 Displacement ellipsoids at 50% probability of n-hexane in 1·n-hexane
(2+1). (a) Conformation with 45% occupancy of C34, (b) conformation with
55% occupancy of C33, (c) superposition of both conformers to show the
mimicry with 1,4-dimethylcyclohexane (sof of atoms).
hexane)0.5: (C30H22O)·(C6H14)0.5, C2/c, a = 25.052(5), b = 20.185(4), c =
9.722(2) Å, b = 98.27(3)°, Z = 8, V = 4865.4(17) Å3, 4736 unique
reflections (5 < 2q < 53°), final R = 0.0675 for 2282 observed reflections
[I > 2s(I)] for 317 parameters. Data collected on a Bruker SMART
diffractometer at 168(2) K using MoKa X-rays (l 0.71073 Å) in the w-2q
scan mode. For both structures, H-atoms were fixed and structure solution
and refinement were done with SHELX-97. CCDC 172239. See http://
other electronic format.
§ Aldrich Chemical Co. USA, mixture of isomers $71.20 per 25g, pure cis
$227.70 per 25g.
¶ PC Spartan Pro 1.0, Wave function Inc. USA.
∑ (1)·(Br(CH2)4Br)0.5: C2/c, a = 25.21, b = 20.21, c = 9.84 Å, b = 97.8°,
T = 293 K, R = 0.12. The heavy guest disorder in interlayer regions gives
a high diffraction R value typical of clays.4 The presence of 1,4-di-
bromobutane in crystals was confirmed by NMR (d 2.0, 3.4).
morphous‡ with identical arrangement of host atoms in the
crystal. The metrics of quinone tape C–H…O bonds are 2.67,
161.9 and 2.99 Å, 175.1°; the (Ph)C–H…O is 2.71 Å, 137.2°. In
the channel, n-hexane is disordered over two orientations with
55% and 45% occupancy (Fig. 3). The slightly elongated
displacement ellipsoid of the C33 atom in a low temperature
crystal structure implies that there are other minor conforma-
tions that contribute to guest disorder, but it is difficult to assign
their exact position because of very low electron density. Using
our refinement model, the structure converges (R factor 0.0675)
with site occupancy factor (sof) of 0.55 and 0.45 for C33 and
C34 guest atoms. Notably, neither of the conformations of n-
hexane trapped in the microcavity correspond to the one in the
crystal structure of pure solvent.12 Superposition of the two
conformers (Fig. 3c) suggests that host 1 may be able to separate
a mixture of cis- and trans-1,4-dimethylcyclohexane.§ The
guest is present in folded conformations because dimensions of
the host cavity (8 3 5 Å) force it to adopt a compact shape.13
The end-to-end C…C distance in the folded conformations of n-
hexane is 5.5 Å (5.3 Å in DME) while it is 6.4 Å in the extended
zigzag conformation.12 Energy of the three conformations of n-
hexane (RHF-631G*)¶ is 2235.2718 au (55% population),
2235.2933 au (45% population) and 2235.3678 au (zigzag). A
survey of the Cambridge Structural Database14 (version 5.21,
April 2001 update) shows that this is the first example of
structural mimicry between DME and n-hexane in a host
channel. The host cavity of 1, which also includes 1,4-di-
bromobutane,∑ is highly selective towards these guest species.
Co-solvents such as EtOAc, Et2O, CHCl3, CH2Cl2 are not
included, even when present in large excess.
1 L. R. MacGillivray and J. L. Atwood, Angew. Chem., Int. Ed., 1999, 38,
1018; P. J. Langley and J. Hulliger, Chem. Soc. Rev., 1999, 28, 279; Y.
Aoyama, Top. Curr. Chem., 1998, 198, 131.
2 M. J. Zaworotko, Chem. Commun., 2001, 1; K. T. Holman, A. M.
Pivovar, J. M. Swift and M. D. Ward, Acc. Chem. Res., 2001, 34, 107;
M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keefe
and O. M. Yaghi, Acc. Chem. Res., 2001, 34, 319; A. Nangia, Curr.
Opin. Solid State Mater. Sci., 2001, 5, 115.
3 R. K. R. Jetti, F. Xue, T. C. W. Mak and A. Nangia, J. Chem. Soc.,
Perkin Trans. 2, 2000, 1223; R. K. R. Jetti, A. Nangia, F. Xue and T. C.
W. Mak, Chem. Commun., 2001, 919; K. Biradha and M. Fujita, Chem.
Commun., 2001, 15; T. J. Prior and M. J. Rosseinsky, Chem. Commun.,
2001, 495.
4 E. B. Brouwer, K. A. Udachin, G. D. Enright, J. A. Ripmeester, K. J.
Ooms and P. A. Halchuk, Chem. Commun., 2001, 565.
5 H. E. Zimmerman, K. G. Hancock and G. C. Licke, J. Am. Chem. Soc.,
1968, 90, 4892.
6 P. Brunet, M. Simard and J. D. Wuest, J. Am. Chem. Soc., 1997, 119,
2737.
7 S. R. Batten and R. Robson, Angew. Chem., Int. Ed., 1998, 37, 1460.
8 A. Nangia and G. R. Desiraju, Chem. Commun., 1999, 605.
9 G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural
Chemistry and Biology, OUP, Oxford, 1999.
Finally, we note that while polymorphs of phenyl benzoqui-
none 3 were found to have divergent, even abstruse, crystal
¯
packing in P1 (Z = 8) and P21 (Z = 2) space groups,15
pseudopolymorphs of biphenyl analogue 1 are isostructural.
Therefore replacement of geminal phenyl group with biphenyl
steers crystal packing towards a recurring (robust) supramo-
lecular synthon16 and yields a novel, organic host material with
clay-like properties. Metric engineering2 of the lamellar–pillar
molecular framework of 1 is a current goal in our studies.
We thank Professor W. T. Robinson and Dr R. Kadirvelraj
(University of Canterbury, New Zealand) for X-ray data
collection on a Bruker SMART diffractometer. Financial
assistance from the DST in the form of a research project (SP/
S1/G29/98) and for supporting the Enraf-Nonius X-ray dif-
10 C. A. Hunter, Chem. Soc. Rev., 1994, 23, 101.
11 R. Thaimattam, F. Xue, J. A. R. P. Sarma, T. C. W. Mak and G. R.
Desiraju, J. Am. Chem. Soc., 2001, 123, 4432.
12 R. Boese, H.-C. Weiss and D. Bläser, Angew. Chem., Int. Ed., 1999, 38,
988.
13 L. R. MacGillivray, H. A. Spinney, J. L. Reid and J. A. Ripmeester,
Chem. Commun., 2000, 517.
14 F. H. Allen and O. Kennard, Chem. Des. Autom. News, 1993, 8, 31.
15 A. Anthony, G. R. Desiraju, R. K. R. Jetti, S. S. Kuduva, N. N. L.
Madhavi, A. Nangia, R. Thaimattam and V. R. Thalladi, Cryst. Eng.,
1998, 1, 1.
16 A. Nangia and G. R. Desiraju, Top. Curr. Chem., 1998, 198, 57.
Chem. Commun., 2001, 2392–2393
2393