Brief Articles
J ournal of Medicinal Chemistry, 2002, Vol. 45, No. 4 991
7.16 (m, 5H); 13C NMR (D2O/NaOD) δ 23.89, 31.92, 34.97,
55.02, 108.85, 126.89, 129.31, 128.96, 142.83, 166.56, 178.57,
182.24. Anal. (C14H16N2O4) C, H, N.
(7) J ohansen, T. N.; Ebert, B.; Falch, E.; Krogsgaard-Larsen, P.
AMPA receptor agonists: Resolution, configurational assign-
ment, and pharmacology of (+)-(S)- and (-)-(R)-2-amino-3-[3-
hydroxy-5-(2-pyridyl)isoxazol-4-yl]propionic acid (2-Py-AMPA).
Chirality 1997, 9, 274-280.
(8) Falch, E.; Brehm, L.; Mikkelsen, I.; J ohansen, T. N.; Skjærbæk,
N.; Nielsen, B.; Stensbøl, T. B.; Ebert, B.; Krogsgaard-Larsen,
P. Heteroaryl analogues of AMPA. 2. Synthesis, absolute ster-
eochemistry, photochemistry, and structure-activity relation-
ships. J . Med. Chem. 1998, 41, 2513-2523.
(9) Bra¨uner-Osborne, H.; Krogsgaard-Larsen, P. Pharmacology of
(S)-homoquisqualic acid and (S)-2-amino-5-phosphonopentanoic
acid [(S)-AP5] at cloned metabotropic glutamate receptors. Br.
J . Pharmacol. 1998, 123, 269-274.
(10) Bra¨uner-Osborne, H.; Sløk, F. A.; Skjærbæk, N.; Ebert, B.;
Sekiyama, N.; Nakanishi, S.; Krogsgaard-Larsen, P. A new
highly selective metabotropic excitatory amino acid agonist:
2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid. J . Med
Chem. 1996, 39, 3188-3194.
(11) Ahmadian, H.; Nielsen, B.; Bra¨uner-Osborne, H.; J ohansen, T.
N.; Stensbøl, T. B.; Sløk, F. A.; Sekiyama, N.; Nakanishi, S.;
Krogsgaard-Larsen, P.; Madsen, U. (S)-Homo-AMPA, a specific
agonist at the mGlu6 subtype of metabotropic glutamic acid
receptors. J . Med. Chem. 1997, 40, 3700-3705.
(12) Bishoff, F.; J ohansen, T. N.; Ebert, B.; Krogsgaard-Larsen, P.;
Madsen, U. Excitatory amino acid receptor ligands: Asymmetric
synthesis, absolute stereochemistry and pharmacology of (R)-
and (S)-homoibotenic acid. Bioorg. Med. Chem. 1995, 3, 553-
558.
(13) Madsen, U.; Bra¨uner-Osborne, H.; Frydenvang, K.; Hvene, L.;
J ohansen, T. N.; Nielsen, B.; Sa´nchez, C.; Stensbøl, T. B.;
Bischoff, F.; Krogsgaard-Larsen, P. Synthesis and pharmacology
of 3-isoxazolol amino acids as selective antagonists at group I
metabotropic glutamic acid receptors. J . Med. Chem. 2001, 44,
1051-1059.
(14) Kromann, H.; Sløk, F. A.; J ohansen, T. N.; Krogsgaard-Larsen,
P. A convenient synthesis of 4-substituted 3-ethoxy-5-methyl-
isoxazoles by palladium-catalyzed coupling reactions. Tetrahe-
dron 2001, 57, 2195-2201.
Cell Cu ltu r e. The Chinese hamster ovary (CHO) cell line
expressing mGluR1R, mGluR2, mGluR4, and mGluR5a were
maintained as described previously.22-24 The cell lines were
grown in a humidified 5% CO2/95% air atmosphere at 37 °C
in DMEM containing a reduced concentration of (S)-glutamine
(100 mg/mL) and 10% dialyzed fetal calf serum (all GIBCO,
Paisley, Scotland). Two days before the inositol phosphate
assay, 1.8 × 106 cells were divided into the wells of 48-well
plates; and 2 days before the cyclic AMP-assay, 1.0 × 106 cells
were divided into the wells of 96-well plates.
Mea su r em en t of P I Hyd r olysis a n d Cyclic AMP F or -
m a tion . The mGluR subtypes mGluR1R, mGluR2, mGluR4a,
and mGluR5a were expressed in CHO cell lines. All compounds
were tested for agonist and antagonist activity at 1 mM
concentrations unless otherwise stated, by the method previ-
ously described.15 Ki values were calculated from IC50 values
by use of the Cheng-Prusoff equation.25
Recep tor Bin d in g Assa ys. Affinities for NMDA, AMPA,
and kainic acid receptors were determined using [3H]CPP,17
[3H]AMPA,18 and [3H]kainic acid19 with the modifications
previously described.6 The membrane preparation used in all
the receptor binding experiments were prepared according to
the method described by Ransom and Stec.26 The amount of
bound radioactivity was determined using a Packard TOP-
COUNT microplate scintillation counter. Data were analyzed
using Grafit 3.0 Leatherbarrow software. Data were fitted to
the equation, B ) 100 - (100 × [inhibitor]n)/(IC50 + [inhibi-
n
tor]n), where B is the binding as a percentage of total specific
binding and n the Hill coefficient.
In Vitr o Electr op h ysiology. A rat cortical preparation20
in a modified version21 was used for the determination of the
depolarizing effects of the excitatory amino acid analogues
under study. Agonists were applied for 90 s. Receptor selectiv-
ity was determined by antagonizing responses, approximately
corresponding to the EC50 values of the compounds in question,
with 5 µM CPP or 5 µM NBQX for NMDA and AMPA
receptors, respectively. Antagonists were applied for 90 s,
followed by a coapplication of agonist and antagonist for 90 s.
(15) Bra¨uner-Osborne, H.; Nielsen, B.; Krogsgaard-Larsen, P. Mo-
lecular pharmacology of homologues of ibotenic acid at cloned
metabotropic glutamic acid receptors. Eur. J . Pharmcol. 1998,
350, 311-316.
(16) J ohansen, T. N.; Ebert, B.; Bra¨uner-Osborne, H.; Didriksen, M.;
Christensen, I. T.; Søby, K. K.; Madsen, U.; Krogsgaard-Larsen,
P.; Brehm, L. Excitatory amino acid receptor ligands: Resolu-
tion, absolute stereochemistry, and enantiopharmacology of
2-amino-3-(4-butyl-3-hydroxyisoxazol-5-yl)propionic acid. J . Med.
Chem. 1998, 41, 930-939.
(17) Murphy, D. E.; Schneider, J .; Boehm, C.; Lehmann, J .; Williams,
K. Binding of [3H]3-(2-carboxypiperazine-4-yl)propyl-1-phospho-
nic acid to rat membranes. A selective high affinity ligand for
N-methyl-D-aspartate receptors. J . Pharmacol. Exp. Ther. 1987,
240, 778-783.
Data were fitted to the equation, % response ) (Emax
×
n
[agonist]n)/(EC50 + [agonist]n), where Emax is the relative
maximal response and n is the Hill coefficient.
Ack n ow led gm en t. The technical assistance of Ms.
Heidi Petersen and Ms. Lisbeth Eriksen and the sec-
retarial assistance of Anne Nordly are gratefully ac-
knowledged. Professor Shigetada Nakanishi (Kuoto
University) is gratefully acknowledged for providing the
mGluR expression cell lines.
(18) Honore´, T.; Nielsen, M. Complex structure of quisqualate-
sensitive glutamate receptors in rat cortex. Neurosci. Lett. 1985,
54, 27-32.
(19) Braitman, D. J .; Coyle, J . T. Inhibition of [3H]kainic acid receptor
binding by divalent cations correlated with ion affinity for the
calcium channel. Neuropharmacology 1987, 26, 1247-1251.
(20) Harrison, N. L.; Simmonds, M. A. Quantitative studies on some
antagonists of N-methyl-D-aspartate in slices of rat cerebral
cortex. Br. J . Pharmacol. 1985, 84, 381-391.
Su p p or tin g In for m a tion Ava ila ble: Detailed informa-
tion on the synthesis and characterization of 9b-g, 11e-g,j-
l, and 12e-g,j-l. This material is available free of charge via
the Internet at http://pubs.acs.org.
(21) Madsen, U.; Frølund, B.; Lund, T. M.; Ebert, B.; Krogsgaard-
Larsen, P. Design, synthesis and pharmacology of model com-
pounds for indirect elucidation of the topography of AMPA
receptor sites. Eur. J . Med. Chem. 1993, 28, 791-800.
(22) Aramori, I.; Nakanishi, S. Signal transduction and pharmaco-
logical characteristics of a metabotropic glutamate receptor,
mGluR1, in transfected CHO cells. Neuron 1992, 8, 757-765.
(23) Tanabe, Y.; Masu, M.; Ishii, T.; Shigemoto, R.; Nakanishi, S. A
family of metabotropic glutamate receptors. Neuron 1992, 8,
169-179.
(24) Tanabe, Y.; Nomura, A.; Masu, M.; Shigemoto, R.; Mizuno, N.;
Naganishi, S. Signal transduction, pharmacological properties,
and expression patterns of two rat metabotropic glutamate
receptors, mGluR3 and mGluR4. J . Neurosci. 1993, 13, 1372-
1378.
(25) Craig, D. A. The Cheng-Prusoff relationship: Something lost in
the translation. Trends Pharmacol. Sci. 1993, 14, 89-91.
(26) Ransom, R. W.; Stec, N. L. Cooperative modulation of [3H]MK801
binding to the N-methyl-D-aspartate receptor-ion channel com-
plex by L-glutamate, glycine and polyamines. J . Neurochem.
1988, 51, 830-836.
Refer en ces
(1) Dingledine, R.; Borges, K.; Bowie, D.; Traynelis, S. F. The
glutamate ion channels. Pharmacol. Rev. 1999, 51, 7-62.
(2) Bra¨uner-Osborne, H.; Egebjerg, J .; Nielsen, E. Ø.; Madsen, U.;
Krogsgaard-Larsen, P. Ligands for glutamate receptors: Design
and therapeutic prospects. J . Med. Chem. 2000, 43, 2609-2645.
(3) Conn, J . P.; Pin, J . P. Pharmacology and functions of metabo-
tropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 1997,
37, 205-237.
(4) Parsons, C. G.; Danysz, W.; Quack, G. Glutamate in CNS
disorders as a target for drug development: An Update. Drug
News Perspect. 1998, 11, 523-569.
(5) Kno¨pfel, T.; Kuhn, R.; Allgeier, H. Metabotropic glutamate
receptors: Novel targets for drug development. J . Med. Chem.
1995, 38, 1417-1426.
(6) Ebert, B.; Lenz, S. M.; Brehm, L.; Bregnedal, P.; Hansen, J . J .;
Frederiksen, K.; Bøgesø, K. P.; Krogsgaard-Larsen, P. Resolu-
tion, absolute stereochemistry, and pharmacology of the S-(+)-
and R-(-)-isomers of the apparent partial AMPA receptor
agonist (R,S)-2-amino-3-(3-hydroxy-5-phenylisoxazol-4-yl)propi-
onic acid [(R,S)-APPA]. J . Med. Chem. 1994, 37, 878-884.
J M010443T