X. Asvos et al. / Journal of Photochemistry and Photobiology A: Chemistry 219 (2011) 255–264
263
kisc
1BzX* + NEt3
3BzX* + NEt3
ket
kdiff
3
a
BzX
NEt3
BzX
+
NEt3
c
contact ion pair
solvent separated ion pairs
hv
kbet
kpt
b
d
X
BzX + NEt3
Me
polymerization
+
OH
C
NEt2
H
Ph
α-amino ethyl
radical
Scheme 4.
3BP* by MMA (kq = 5.4 × 107 L mol−1 s−1 in MeCN [10b] and
primary electron transfer step a), does not differentiate much
for 3X* (kq = 4.4 × 109 L mol−1 s−1 [39] and 2.4 × 109 L mol−1 s−1
[11] (a) V. Georgakilas, G.P. Perdikomatis, A.S. Triantafyllou, M.G. Siskos, A.K.
Zarkadis, Tetrahedron 58 (2002) 2441–2447;
(b) J. Heller, St. v. Kostanecki, Ber. Dtsch. Chem. Ges. 41 (1908) 1324–1327.
[12] S.L. Murov, I. Carmichael, G.L. Hug, Carmichael, Handbook of Photochemistry,
2nd ed., Marcel Dekker, New York, 1993, p. 57.
[13] (a) S.A. Yamamoto, K. Kikuchi, H. Kokubun, J. Photochem. 7 (1977) 177–184;
(b) R.V. Bensasson, E.J. Land, Trans. Faraday Soc. 67 (1971) 1904–1915.
[14] (a) R.V. Bensasson, J.C. Gramain, J. Chem. Soc., Faraday Trans. 176 (1980)
1801–1810;
(b) I. Carmichael, G.L. Hug, J. Phys. Chem. Ref. Data 15 (1986) 1–250.
[15] (a) M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheese-
man, V.G. Zakrzewski, J.A. Montgomery Jr., R.E. Stratmann, J.C. Burant, S.
Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi,
V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford,
J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D.
Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G.
Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, M. Challa-
combe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez,
M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 98 Revision A.9, Gaussian,
Inc, Pittsburgh, PA, 1998;
[30k] in MeCN), for 3BzX* (kq = 3.5 × 109 L mol−1 s−1
, Section
3.5.4 and Fig. S9 of Supplementary Material) or for 3BP*
(kq = 3.5 × 109 L mol−1 s−1 [39], 4.0 × 109 L mol−1 s−1 [40] in MeCN).
Thus, the quenching of xanthone triplet by MMA is a very com-
petitive process compared to the crucial electron/proton transfer
reaction which affords the desired ␣-aminoethyl radical through
steps a and b. On the contrary, the electron transfer is more com-
petitive in the cases of 3BzX*and 3BP*.
Summarizing, the above results show that triplet 3BzX* behaves
like the benzophenone triplet 3BP* and deviates from that of xan-
thone 3X*, i.e., triplet excitation is localized mostly on the benzoyl
subunit of BzX. This property renders 2-benzoyl-xanthone a much
more effective type-II photoinitiator than the unsubstituted xan-
thone.
(b) M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheese-
man, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S.
Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P.
Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Strat-
mann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.
Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich,
A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari,
J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Ste-
fanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith,
M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. John-
son, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03 Revision D.01,
Gaussian, Inc., Wallingford, CT, 2004.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
[16] F. Scigalski, J. Paczkowski, Macromol. Chem. Phys. 209 (2008) 1872–1880.
[17] (a) H.J. Pownall, J.R. Huber, J. Am. Chem. Soc. 93 (1971) 6429–6436;
(b) H.J. Pownall, R.E. Connor, J.R. Huber, Chem. Phys. Lett. 22 (1973) 403–405.
[18] K. Mizutani, K. Miyazaki, K. Ishigaki, H. Hosoya, Bull. Chem. Soc. Jpn. 47 (1974)
1596–1603.
[19] A.A. Efimov, R.N. Nurmukhametov, I.L. Belaits, A.I. Tolmachev, Opt. Spectrosc.
30 (1971) 337.
[20] T. Minegishi, T. Hoshi, H. Hiratsuka, Y. Tanizaki, Bull. Chem. Soc. Jpn. 50 (1977)
3140–3143.
[21] R.E. Connors, R.J. Sweeney, F. Cerio, J. Phys. Chem. 91 (1987) 819–822.
[22] S. Ishijima, M. Higashi, H. Yamaguchi, J. Phys. Chem. 98 (1994) 10432–10435.
[23] S.L. Zheng, P. Coppens, Chem. Eur. J. 11 (2005) 3583–3590.
[24] A. Thöny, M.J. Rossi, J. Photochem. Photobiol. A: Chem. 104 (1997) 25–33.
[25] B. Heinz, B. Schmidt, C. Root, H. Satzger, F. Milota, B. Fierz, T. Kiefhaber, W.
Zintha, P. Gilch, Phys. Chem. Chem. Phys. 8 (2006) 3432–3439.
References
[1] X. Asvos, PhD thesis in preparation, University of Ioannina, Greece.
[2] (a) J.P. Fouassier, J.F. Rabek (Eds.), Radiation Curing in Polymer Science and
Technology, vols. I–IV, Elsevier Applied Science, London, 1993;
(b) J.P. Fouassier, Photoinitiation, Photopolymerization and Photocuring Fun-
damentals and Applications, Hanser Publishers, New York, 1995 (Chapter 1).
[3] C.N. Bowman, C.J. Kloxin, AIChE J. 58 (2008) 2775–2795.
[4] H.F. Gruber, Prog. Polym. Sci. 17 (1992) 953–1044.
[5] A.B. Scranton, C.N. Bowman, R.W. Peiffer (Eds.), Photopolymerization Fun-
damentals and Applications, ACS, Washington, 1997, ACS Symposium Series
673K.
[6] W. Rutsch, K. Dietliker, D. Leppard, M. Köhler, L. Misev, U. Kolczak, G. Rist, Prog.
Org. Coat. 27 (1996) 227–239.
[26] (a) M. Cossi, V. Barone, J. Chem. Phys. 115 (2001) 4708–4717;
(b) D. Jacquemin, J. Preat, E.A. Perpete, Chem. Phys. Lett. 410 (2005) 254–259;
(c) D. Jacquemin, J. Preat, M. Charlot, V. Wathelet, J.M. Andre, E.A. Perpete, J.
Chem. Phys. 121 (2004) 1736–1743.
[27] (a) S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 55 (1981) 117–129;
(b) S. Miertus, J. Tomasi, Chem. Phys. 65 (1982) 239–241;
(c) B. Mennucci, E. Cances, J. Tomasi, J. Phys. Chem. 101 (1997) 10506–10517;
(d) M. Cossi, V. Barone, J. Cammi, Chem. Phys. Lett. 255 (1996) 327–335.
[28] S.K. Chattopadhyay, C.V. Kumar, P.K. Das, J. Photochem. 30 (1985) 81–91.
[29] R.E. Kellogg, W.T. Simpson, J. Am. Chem. Soc. 87 (1965) 4230–4234.
[7] J.P. Fouassier, X. Allonas, D. Burget, Prog. Org. Coat. 47 (2003) 6–36.
[8] R.S. Davidson, A.A. Dias, D. Illsley, J. Photochem. Photobiol. A: Chem. 89 (1995)
75–87.
[9] D.A. Tasis, M.G. Siskos, A.K. Zarkadis, Macromol. Chem. Phys. 199 (1998)
1981–1987.
[10] (a) N.S. Allen, N.G. Salleh, M. Edge, T. Corrales, M. Shah, F. Catalina, W.A. Green,
Eur. Polym. J. 33 (1997) 1639–1643;
(b) H.J. Timpe, K.P. Kronfeld, J. Photochem. Photobiol. A: Chem. 46 (1989)
253–267;
(c) H.J. Timpe, K.P. Kronfeld, U. Lammel, J.P. Fouassier, D.J. Lougnot, J. Pho-
tochem. Photobiol. A: Chem. 52 (1990) 111–122;
(d) L. Cokbaglan, N. Arsu, Y. Yagci, S. Jockusch, N.J. Turro, Macromolecules 36
(2003) 2649–2653;
(e) G. Temel, N. Arsu, J. Photochem. Photobiol. A: Chem. 202 (2009) 63–66;
(f) M. Aydin, N. Arsu, Y. Yagci, Macromol. Rapid Commun. 24 (2003) 718–723;
(g) M. Aydin, N. Arsu, Y. Yagci, S. Jockusch, N.J. Turro, Macromolecules 38 (2005)
4133–4138.
[30] (a) A. Garner, F. Wilkinson, J. Chem. Soc., Faraday Trans.
1010–1020;
2 (72) (1976)
(b) F. Wilkinson, A. Garner, J. Chem. Soc., Faraday Trans. 2 (73) (1977) 222–223;
(c) F. Wilkinson, A. Garner, Photochem. Photobiol. 27 (1978) 659–670;
(d) C. Ley, F. Morlet-Savary, J.P. Fouassier, P. Jacques, J. Photochem. Photobiol.
A: Chem. 137 (2000) 87–92;
(e) J.C. Scaiano, J. Am. Chem. Soc. 102 (1980) 7747–7753;