F. Zouhiri et al. / Tetrahedron Letters 42 (2001) 8189–8192
8191
4. (a) King, P. J.; Ma, G.; Miao, W.; Jia, Q.; McDougall,
B. R.; Reinecke, M. G.; Cornell, C.; Kuan, J.; Kim, T.
R.; Robinson, Jr., W. E. J. Med. Chem. 1999, 42, 497–
509; (b) King, P. J.; Robinson, Jr., W. E. J. Virol. 1998,
72, 8420–8424.
Table 1. Biological data of compounds 1, 3 and 4
Compound
HIV-1 integrase inhibitory
potency (strand transfer
process) IC50 (mM)
Anti-HIV-1 activity
IC50 (mM)
5. Hazuda, D. J.; Felock, P.; Witmer, M.; Wolfe, A.; Still-
mock, K.; Grobler, J. A.; Espeseth, A.; Gabryelski, L.;
Schleif, W.; Blau, C.; Miller, M. D. Science 2000, 287,
646–650.
1
3
4
1
0.1
100
1
1
10
6. Le Bret, M. et al., manuscript in preparation (see also
Ref. 3).
7. Barbero, M.; Cadamuro, S.; Degani, I.; Dughera, S.;
Fochi, R. J. Org. Chem. 1995, 60, 6017–6024.
8. Meek, W. H.; Fuschman, C. H. J. J. Chem. Eng. Data
1969, 14, 388–391.
9. Compound 6: Colorless crystals; mp 33–34°C; IR (neat,
cm−1) w: 1709, 1610, 1556, 1505; 1H NMR (DMSO-d6,
200 MHz) l: 7.90 (d, J=8.4 Hz, 1H), 7.66 (d, J=8.5
Hz, 1H), 7.39 (d, J=8.5 Hz, 1H), 7.21 (d, J=8.4 Hz,
1H), 4.18 (s, 3H), 3.90 (s, 3H), 2.65 (s, 3H); 13C NMR
(CDCl3, 50 MHz), l: 166.6 (C), 158.6 (C), 156.2 (C),
142.3 (C), 135.7 (CH), 129.5 (C), 125.4 (CH), 123.2 (C),
123.1 (CH), 122.2 (CH), 63.1 (CH3), 51.8 (CH3), 25.1
(CH3).
delivered with a 57% yield the a-oxo trithioorthoester
12,11 which, upon treatment with N-bromosuccinimide
(NBS, THF–H2O, 2 h at 20°C),12 gave the a-oxo thiol
ester 1313 (52% yield). The next issue of the synthesis
was the conversion of the thiol ester group of 13 into
a carboxylic acid. A variety of operating conditions
were considered (1N NaOH, MeOH, 20°C; or 0.1N
NaOH, t-BuOOH, 20°C; or AgNO3, CH3CN, H2O,
20°C), but they all proved to be inappropriate for the
purpose. Finally, after extensive experiments, it was
discovered that subjection of 13 to harsh hydrolytic
conditions (40% aqueous HBr, AcOH, 12 h at 80°C),
not only achieved the task, but also resulted in the
removal of the aromatic OMe and OTBDMS protect-
ing groups, providing our goal 414 in 47% yield
(Scheme 1).
10. Compound 9: Yellow solid; mp 180–185°C (dec.); IR
(neat, cm−1) w: 3340, 2946, 1722, 1631, 1600, 1508; 1H
NMR (DMSO-d6, 200 MHz) l: 9.20 (broad s, 2H), 8.30
(d, J=9.1 Hz, 1H), 7.86 (d, J=9.1 Hz, 1H), 7.75–7.55
(m, 3H), 7.16 (d, J=16.8 Hz, 1H), 7.10 (s, 1H), 7.00 (d,
J=7.9 Hz, 1H), 6.78 (d, J=7.9 Hz, 1H), 4.20 (s, 3H),
3.98 (s, 3H); 13C NMR (DMSO-d6, 50 MHz) l: 166.6
(C), 156.0 (C), 155.5 (C), 147.0 (C), 145.7 (C), 142.3 (C),
136.6 (CH), 135.4 (CH), 130.1 (C), 127.8 (C), 125.2
(2CH), 124.0 (C), 122.9 (CH), 121.3 (CH), 120.1 (CH),
116.0 (CH), 114.1 (CH), 63.0 (CH3), 52.3 (CH3).
11. Compound 12: Orange solid; mp 158–160°C; IR (neat,
cm−1) w: 2930, 2857, 1688, 1505, 1286, 1250; 1H NMR
(CDCl3, 200 MHz) l: 8.09 (d, J=8.4 Hz, 1H), 7.93 (d,
J=8.2 Hz, 1H), 7.65 (d, J=8.4 Hz, 1H), 7.60 (d, J=
16.2 Hz, 1H), 7.46 (d, J=8.2 Hz, 1H), 7.21 (d, J=16.2
Hz, 1H), 7.15–7.05 (m, 2H), 6.84 (d, J=8.6 Hz, 1H),
4.20 (s, 3H), 2.12 (s, 9H), 0.95 (s, 9H), 0.92 (s, 9H), 0.19
(s, 6H), 0.18 (s, 6H); 13C NMR (CDCl3, 50 MHz) l:
193.5 (C), 155.7 (C), 154.2 (C), 147.9 (C), 147.0 (C),
142.3 (C), 136.2 (CH), 134.6 (CH), 132.0 (C), 130.1 (C),
129.3 (C), 126.9 (CH), 125.3 (CH), 121.8 (CH), 121.1
(2CH), 120.2 (CH), 119.7 (CH), 76.8 (C), 64.0 (CH3),
25.8 (6CH3), 18.4 (2C) 14.0 (3CH3), −4.1 (4CH3).
12. Degani, I.; Dughera, S.; Fochi, R.; Gatti, A. Synthesis
1996, 467–469.
13. Compound 13: Yellow solid; mp 129–130°C; IR (neat,
cm−1) w: 2930, 2856, 1672, 1662, 1594, 1506, 1303, 1249;
1H NMR (CDCl3, 200 MHz) l: 8.10 (d, J=8.7 Hz,
1H), 7.72 (d, J=8.4 Hz, 1H), 7.69 (d, J=8.7 Hz, 1H),
7.63 (d, J=16.2 Hz, 1H), 7.53 (d, J=8.4 Hz, 1H), 7.16
(d, J=16.2 Hz, 1H), 7.12–7.02 (m, 2H), 6.85 (d, J=8.8
Hz, 1H), 4.35 (s, 3H), 2.54 (s, 3H), 1.03 (s, 9H), 1.00 (s,
9H), 0.25 (s, 6H) 0.24 (s, 6H); 13C NMR (CDCl3, 50
MHz) l: 193.3, 190.2, 158.7, 155.7, 148.8, 147.1, 142.1,
136.5, 135.1, 132.3, 130.0, 126.4, 125.5, 124.9, 123.1,
121.9, 121.2 (2C), 119.9, 63.9, 26.0 (6C), 18.4, 11.0 (2C),
−4.0 (4C).
Keto acid 4 was evaluated in vitro for its inhibitory
activity against HIV-1 IN, and ex vivo for its antiviral
activity against HIV-1 replication in CEM cells.2 The
results, together with those obtained with lead
inhibitors 1 and 3, are listed in Table 1. A moderate
antiviral activity was gained with styrylquinoline 4
(IC50=10 mM). However, in contrast with parent com-
pound 1, this keto acid exhibited a complete lack of in
vitro inhibitory potency (IC50>100 mM). Therefore, in
contradiction with the aforementioned docking stud-
ies,6 the ultimate target of drug 4 in the ex vivo
experiments is not HIV-1 IN. Work directed toward
the identification of this viral target is in progress.
References
1. For recent reviews, see: (a) Pommier, Y.; Marchand, C.;
Neamati, N. Antivir. Res. 2000, 47, 139–148; (b) d’An-
gelo, J.; Mouscadet, J.-F.; Desmae¨le, D.; Zouhiri, F.;
Leh, H. Pathol. Biol. 2001, 49, 237–246.
2. (a) Mekouar, K.; Mouscadet, J.-F.; Desmae¨le, D.;
Subra, F.; Savoure´, D.; Auclair, C.; d’Angelo, J. J. Med.
Chem. 1998, 41, 2846–2857; (b) Zouhiri, F.; Mouscadet,
J.-F.; Mekouar, K.; Desmae¨le, D.; Savoure´, D.; Leh, H.;
Subra, F.; Le Bret, M.; Auclair, C.; d’Angelo, J. J. Med.
Chem. 2000, 43, 1533–1540.
3. (a) Ouali, M.; Laboulais, C.; Leh, H.; Gill, D.; Des-
mae¨le, D.; Mekouar, K.; Zouhiri, F.; d’Angelo, J.;
Auclair, C.; Mouscadet, J.-F.; Le Bret, M. J. Med.
Chem. 2000, 43, 1949–1957; (b) Ouali, M.; Laboulais,
C.; Leh, H.; Gill, D.; Xhuvani, E.; Zouhiri, F.; Des-
mae¨le, D.; d’Angelo, J.; Auclair, C.; Mouscadet, J.-F.;
Le Bret, M. Acta Biochim. Polonica 2000, 47, 11–22.