Jarl Ivar van der Vlugt et al.
FULL PAPERS
1
tals were obtained; yield: 5.03 g (63%); H NMR (300 MHz,
C6D6): d¼7.60 (d, 2H, J¼7.5 Hz), 7.22 (d, 2H, J¼7.5 Hz),
7.05 (t, 2H, J¼7.5 Hz), 3.19 (m, 16H, CH2), 1.55 (s, 6H, CH3),
1.06 (t, 12H, CH3, J¼7.1 Hz); 13C NMR (75 MHz, C6D6): d¼
151.0, 130.6, 130.1, 129.5, 126.0, 122.4, 43.3 (CH2), 33.9
(CMe2), 32.7 (CMe2), 14.5 (CH3); 31P{1H} NMR (162 MHz, C6
D6): d¼92.3 (s); anal. calcd for C31H51N4OP2: C 66.6, H 9.4, N
10.0; found: C 66.3, H 9.3, N 9.9.
4,6-Bis{di[(2-tert-butyl)phenyl]phosphonito}-2,8-
dimethylphenoxathiin (3)
Starting from 2.30 g (5.20 mmol) of D and 3.12 g (20.8 mmol)
of 2-tert-butylphenol, compound 3 was obtained as a white
powder in analogy to the synthetic procedure described for li-
gand 1; yield: 1.61 g (35%); 1H NMR (400 MHz, C6D6): d¼7.87
1
2
(s, 2H), 7.26 (m, 2H, J¼2 Hz), 7.22 (dd, 1H, J¼7.6 Hz, J¼
1
2
1.6 Hz), 7.18 (dd, 2H, J¼2.8 Hz, J¼1.2 Hz), 7.18 (d, 2H,
1
2
J¼9.2 Hz), 6.93 (td, 1H, J¼7.6 Hz, J¼2 Hz), 6.81 (dd, 4H,
2
1J¼2.8 Hz, J¼1.2 Hz), 6.81 (d, 4H, J¼9.2 Hz), 6.67 (d, 1H,
4,6-(Bis[bis-diethylamido]phosphonito)-2,8-
dimethylphenoxathiin (D)
J¼1.2 Hz), 6.50 (dd, 1H, J1 ¼7.6 Hz, J2 ¼1.2 Hz), 1.47 (s, 6H,
CH3), 1.34 (s, 36H, t-Bu); 13C NMR (100 MHz, C6D6): d¼
155.5, 154.7, 139.4, 134.8, 130.2, 129.6, 128.1, 127.9, 126.9,
123.0, 120.0, 118.9, 118.9, 116.7, 34.7, 30.1, 29.7; 31P{1H} NMR
(162 MHz, C6D6): d¼145.8 (s); MS (MaldiTOF): m/z (%)¼
917.49 (100) [Mþ2O]þ; a correct microanalysis could not be
obtained.
This product was synthesized in a similar manner as described
for compound C, starting from 3.26 g (14.2 mmol) of 2,8-dime-
thylphenoxathiin. Yield: 3.55 g (43%); light yellow crystals;
1H NMR (300 MHz, C6D6): d¼7.28 (s, 2H), 6.74 (s, 2H), 3.21
(m, 16H, CH2), 2.09 (s, 6H, CH3), 1.13 (t, 12H, CH2CH3, J¼
7.0 Hz); 13C NMR (75 MHz, C6D6): d¼151.0, 132.8, 131.0,
127.7, 127.1, 118.9, 43.5 (CH2), 20.7 (CH3), 14.8 (CH2CH3);
31P{1H} NMR (162 MHz, C6D6): d¼90.4 (s).
4,6-Bis{di[(3,5-di-tert-butyl)phenyl]phosphonito}-2,8-
dimethylphenoxathiin (4)
Starting from 2.00 g (3.47 mmol) of D and 2.85 g (13.87 mmol)
of 3.5-di-tert-butylphenol, compound 4 was obtained as a white
powder in analogy to the synthetic procedure described for li-
gand 1; yield: 2.08 g (54%); 1H NMR (400 MHz, C6D6): d¼7.75
(s, br, 2H), 7.32 (d, 8H, J¼1.4 Hz), 7.16 (t, 4H, J¼1.4 Hz), 6.61
(d, 2H, J¼1.6 Hz) (16 aromatic protons), 1.22 (s, 6H, CH3),
1.16 (s, 72 H, t-Bu); 13C NMR (100 MHz, C6D6): d¼155.62,
152.30, 134.3, 129.77, 129.72, 128.40, 125.52, 119.8, 117.39,
115.41, 115.37, 115.33, 110.1, 34.82, 31.39, 20.19; 31P{1H} NMR
(162 MHz, C6D6): d 144.7 (s); anal. calcd. for C70H94O5P2S: C
75.8, H 8.5; found: C 75.8, H 8.1; MS (MaldiTOF): m/z (%)¼
1141.91 (100) [Mþ2O]þ.
4,5-Bis{di[(2-tert-butyl)phenyl]phosphonito}-9,9-
dimethylxanthene (1)
Both
A (2.11 g, 3.58 mmol), 2-tert-butylphenol (2.15 g,
14.3 mmol) and 2 mol % of tetrazole were dissolved in 20 mL
of di(2-methoxyethyl) ether. The reaction mixture was heated
to 1358C for 3 days, while the diethylamine formed during re-
action was removed under vacuum twice a day. Solvent was re-
moved under vacuum to give a light yellow solid. It was dis-
solved in 10 mL of dichloromethane and after layering of the
solution with 10 ml of ethanol a pure white powder precipitat-
1
ed; yield: 1.40 g (45%); H NMR (400 MHz, C6D6): d¼8.15
1
2
1
2
(dd, 2H, J¼7.2 Hz, J¼1.2 Hz), 7.26 (dd, 4H, J¼8 Hz, J¼
1.6 Hz), 7.17 (dd, 2H, J¼8 Hz, 2J¼1.6 Hz), 7.14 (d, 4H, 1J¼
1
4,5-Bis{dibenzo[d, f]-2,4,3’,5’-tetra-tert-butyl-
[1,3,2]dioxaphosphepino}-9,9-dimethylxanthene (5)
8 Hz, 2J¼2 Hz), 7.0 (t, 2H, 1J¼7.6 Hz), 6.86 (t, 4H, 1J¼8 Hz,
2J¼2.4 Hz), 6.81 (t, 4H, J¼7.6 Hz, J¼1.6 Hz), 1.35 (s, 6H,
CH3), 1.32 (s, 36H, t-Bu); 13C NMR (100 MHz, C6D6): d¼
155.3, 139.4, 130.5, 129.0, 128.7, 127.4, 127.1, 124.1, 122.7,
119.2, 119.1, 118.9, 34.7, 31.4, 30.1; 31P{1H} NMR (162 MHz,
C6D6): d¼147.8 (s); anal. calcd. for C55H64O5P2: C 76.2, H 7.4;
found: C 76.3, H 7.4. MS (MaldiTOF): m/z (%)¼899.45 (100)
[Mþ2O]þ.
1
2
Starting from 3.52 g (6.30 mmol) of C and 5.17 g (12.60 mmol)
of B, compound 5 was obtained as a white powder in analogy to
the synthetic procedure described for ligand 1. The reaction
1
time was increased to 4 days; yield: 5.82 g (85%); H NMR
¼
(400 MHz, C6D6): d¼7.62 (d, 2H, J 6.8 Hz), 7.50 (d, 1H,
J¼2 Hz), 7.48 (d, 3H, J¼2.4 Hz), 7.35 (d, 3H, J¼2.4 Hz),
1
2
7.23 (d, 1H, J¼2.4 Hz), 7.04 (dd, 2H, J¼2 Hz, J¼1.5 Hz),
6.62 (t, 2H, J¼7.6 Hz), 1.55 (s, 6H, CH3), 1.35 (s, 36H, t-Bu),
1.27 (s, 36H, t-Bu); 13C NMR (100 MHz, C6D6): d¼146.27,
140.74, 134.61, 129.78, 128.73, 126.84, 124.35, 123.18, 35.58 (C
t-Bu front), 35.37 (CCH3), 34.49 (C t-Bu back), 31.47 (CH3 t-
Bu front), 31.35 (CH3 t-Bu back), 29.95 (CCH3);
31P{1H} NMR (162 MHz, C6D6): d¼169.0 (s); anal. calcd. for
C71H92O5P2: C 78.4, H 8.5; found: C 78.1, H 8.2; MS (Maldi-
TOF): m/z (%)¼1119.66 (100) [Mþ2O]þ.
4,5-(Bis{di[(3,5-di-tert-butyl)phenyl]phosphonito}-9,9-
dimethylxanthene (2)
Starting from C (4.32 g, 7.73 mmol) and 3,5-bis(tert-butyl)phe-
nol (6.35 g, 30.9 mmol), compound 2 was obtained as a white
powder in analogy to the synthetic procedure described for li-
gand 1; yield: 4.57 g (54%); 1H NMR (400 MHz, C6D6): d¼8.15
(dd, 2H, J¼7.6 Hz, J¼1.2 Hz), 7.32 (d, 8H, J¼1.6 Hz), 7.15 (t,
4H, J¼1.6 Hz), 7.07 (dd, 6H, J¼7.6 Hz, J¼1.6 Hz), 6.92 (t,
2H, J¼7.6 Hz), 1.25 (s, 6H, CH3), 1.14 (s, 72H, t-Bu);
13C NMR (100 MHz, C6D6): d¼155.8, 152.2, 130.0, 129.5,
128.5, 128.3, 117.3, 115.5, 115.4, 34.8, 31.8, 31.4; 31P{1H} NMR
(162 MHz, C6D6): d¼148.4 (s); anal. calcd. for C71H96O5P2: C
78.1, H 8.9; found: C 78.0, H 8.6; MS (MaldiTOF): m/z (%)¼
1123.72 (100) [Mþ2O]þ.
4,5-Bis{dibenzo[d, f]-2,5’-di-tert-butyl-4,3’-dimethoxy-
[1,3,2]dioxaphosphepino}-9,9-dimethylxanthene (6)
Starting from 3.19 g (5.72 mmol) of C and 4.10 g (11.44 mmol)
of A, compound 6 was obtained as a white powder in analogy to
the synthetic procedure described for ligand 5; yield: 4.89 g
1000
¹ 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
asc.wiley-vch.de
Adv. Synth. Catal. 2004, 346, 993 1003