COMMUNICATIONS
À
À
À
À
(Bn Cip), 155.61 (Py Co), 154.87 (Ar-Cip), 141.39 (Ar Co), 127.55 (Bn Cm,
0.71073 ä), f en w scan. The structure was solved by the PATTY
option[15] of the DIRDIF program system.[16] Crystallographic data
(excluding structure factors) for the structures reported in this paper
have been deposited with the Cambridge Crystallographic Data
Centre as supplementary publication no. CCDC-167159. Copies of the
data can be obtained free of charge on application to CCDC, 12 Union
Road, Cambridge CB21EZ, UK (fax: (44)1223-336-033; e-mail:
deposit@ccdc.cam.ac.uk).
À
À
À
À
Bn Co), 126.93(Ar-Cp), 124.82 (Ar Cm), 123.98 (Py Cm), 119.85 (Bn Cp),
À
116.43 (Py Cp), 28.62 (CHMe2), 25.75 (N CMe), 24.38 (CHMeMe), 23.35
(CHMeMe), 1.15 (Bn CH2).
À
[N3iPrCoCH2SiMe3] (5): 2 (71 mg, 0.12 mmol) and LiCH2SiMe3 (14 mg,
0.15 mmol, 1.2 equiv) of were dissolved in toluene (5 mL). After stirring for
10 min at room temperature, the mixture was filtered over celite. The
purple filtrate was evaporated to dryness in vacuo. 1H NMR spectroscopy
of the residue showed that the conversion was quantitative. Purple crystals
[9] A. L. Spek, Platon, multipurpose crystallographic tool, Utrecht
University, Utrecht, The Netherlands, 2001.
[10] CoIMe: a) H.-F. Klein, K. Ellrich, B. Hammerschmitt, U. Koch, G.
Cordier, Z. Naturforsch. 1990, 45, 1291; b) H.-F. Klein, E. Auer, T.
Jung, C. Rohr, Organometallics 1995, 14, 2725 2732; CoIPh: c) H.-F.
Klein, R. Hammer, J. Gross, U. Schubert, Angew. Chem. 1980, 92,
were obtained from a hexane solution at À358C. 1H NMR (300 MHz,
3
À
C6D6, 298 K): d 9.89 (t, 1H, J(H,H) 7.8 Hz, Py Hp), 7.62 (d, 2H,
3
3
À
À
J(H,H) 7.5 Hz, Py Hm), 7.51 (t, 2H, J(H,H) 7.5 Hz, Ar Hp), 7.39 (d,
3
3
À
4H, J(H,H) 7.5 Hz, Ar Hm), 3.30 (sept, 4H, J(H,H) 6.9 Hz, CHMe2),
1.11 (d, 12H, 3J(H,H) 6.9 Hz, CHMeMe), 1.04 (d, 12H, 3J(H,H) 6.9 Hz,
I
ꢀ
835 836; Angew. Chem. Int. Ed. Engl. 1980, 19, 809; Co C CH: d) G.
CHMeMe), 0.53 (s, 2H, CH2SiMe3), À0.54 (s, 9H, CH2SiMe3), À0.85 (s,
Stringer, N. J. Taylor, T. B. Marder, Acta Crystallogr. 1996, 52, 80 82.
[11] B. de Bruin, E. Bill, E. Bothe, T. Weyherm¸ller, K. Wieghardt, Inorg.
Chem. 2000, 39, 2936 2947.
13
6H, N CMe); C NMR (100 MHz, C6D6, 298 K): d 165.70 (N C),
À
À
À
À
155.25 (Ar Cip), 154.20 (Py Co), 140.91 (Ar Co), 126.98 (Ar Cp), 124.70
À
À
À
(Ar Cm), 123.87 (Py Cm), 115.90 (Py Cp), 28.67 (CHMe2), 25.19
[12] P. H. M. Budzelaar, B. de Bruin, A. W. Gal, K. Wieghardt, J. H.
van Lenthe, Inorg. Chem. 2001, 40, 4649 4655. Using the method
described in this paper, we estimate a backdonation of approximately
0.9 e for 5, compared to <0.1 e for 1.
(N CMe), 24.69 (CHMeMe), 24.17 (CHMeMe), 3.12 (SiMe3), CH2SiMe3
not visible; elemental analysis calcd (%) for C37H54N3CoSi: C 70.78, H 8.67,
N 6.69; found: C 70.66, H8.73, N 6.85.
[13] The presence of trace amounts of low (1) or high molecular weight
polymers (2 5) results in a slight broadening of the Mw/Mn values: 1:
3.4; 2: 3.7; 3: 2.5; 4: 3.2; 5: 3.1.
Received: July 30, 2001
Revised: September 26, 2001 [Z17632]
[14] The spectrum was partly obscured by the signals of MAO, toluene, and
residual THF from the synthesis of 1.
[15] P. T. Beurskens, G. Beurskens, M. Strumpel, C. E. Nordman in
Patterson and Pattersons (Eds.: J. P. Glusker, B. K. Patterson, M.
Rossi) Clarendon Press, Oxford, 1987, p. 356.
[1] a) B. L. Small, M. Brookhart, A. M. A. Bennett, J. Am. Chem. Soc.
1998, 120, 4049 4050; b) G. J. P. Britovsek, V. C. Gibson, B. S.
Kimberley, P. J. Maddox, S. J. McTavish, G. A. Solan, A. J. P. White,
D. J. Williams, Chem. Commun. 1998, 849 850; c) B. L. Small, M.
Brookhart, J. Am. Chem. Soc. 1998, 120, 7143 7144; d) G. J. P.
Britovsek, M. Bruce, V. C. Gibson, B. S. Kimberley, P. J. Maddox, S.
Mastroianni, S. J. McTavish, C. Redshaw, G. A. Solan, S. Strˆmberg,
A. J. P. White, D. J. Williams, J. Am. Chem. Soc. 1999, 121, 8728 8740;
e) G. J. P. Britovsek, S. Mastroianni, G. A. Solan, S. P. D. Baugh, C.
Redshaw, V. C. Gibson, A. J. P. White, D. J. Williams, M. R. J. Else-
good, Chem. Eur. J. 2000, 6, 2221 2231.
[2] E. P. Talzi, D. E. Babushkin, N. V. Semikolenova, V. N. Zudin, V. A.
Zakharov, Kinetics and Catalysis 2001, 42, 147 153. Neutral com-
plexes rather than cationic intermediates are suggested to be the
active components when [N3MeFeCl2] is activated witheither MAO or
AlMe3.
[3] V. C. Gibson, lecture at the 11th International Symposium on
Homogeneous Catalysis, University of St. Andrews, UK, 1998.
[4] a) D. Reardon, F. Conan, S. Gambarotta, G. Yap, Q. Wang, J. Am.
Chem. Soc. 1999, 121, 9318 9325; b) E. L. Dias, M. Brookhart, P. S.
White, Organometallics 2000, 19, 4995 5004.
[5] a) L. Deng, P. Margl, T. Ziegler, J. Am. Chem. Soc. 1999, 121, 6479
6487; b) P. Margl, L. Deng, T. Ziegler, Organometallics 1999, 18,
5701 5708; c) E. A. H. Griffiths, G. J. P. Britovsek, V. C. Gibson, I. R.
Gould, Chem. Commun. 1999, 1333 1334; d) D. V. Khoroshun, D. G.
Musaev, T. Vreven, K. Morokuma, Organometallics 2001, 20, 2007
2026.
[16] P. T. Beurskens, G. Beurskens, W. P. Bosman, R. de Gelder, S. Garcia-
Granda, R. O. Gould, R. Israel, J. M. M. Smits, DIRDIF-96,
a
computer program system for crystal structure determination by
Patterson methods and direct methods applied to difference structure
factors; Crystallography Laboratory, University of Nijmegen, The
Netherlands, 1996.
[17] G. M. Sheldrick, SHELXL-97, program for the refinement of crystal
structures; University of Gottingen, Germany, 1997.
[18] There are, however, still possibilities for re-oxidation of CoI to CoII on
activation. For example, alkyl abstraction from [N3CoR] could
produce [N3Co] species, which could oxidize a second molecule of
[N3CoR] to the CoII species [N3CoR] . Alternatively, [N3Co(C2H4)] ,
from ethene capture by [N3Co] , could be attacked by a Lewis acid A,
to give a zwitterionic CoIII species [N3Co(C2H4A)] which could
comproportionate with[N 3CoR] to give the two CoII complexes
[N3CoR] and [N3Co(C2H4A)].
[19] One possibility for a CoI active species would be an [N2CoMe]
complex formed by MAO abstraction of an imine group from the
metal center; this would be electronically similar to NiII/PdII diimine
catalysts. A CoIII active species could be formed by Lewis acid attack
on [N3Co(C2H4)] , as described above.[18]
[6] This reduction is not restricted to N3iPr. Preliminary experiments
indicate that also complexes of the 2,6-Me2C6H3 and 2,4,6-Me3C6H2
substituted ligands were reduced to the corresponding CoI chloride
when treated with MeLi in toluene.
[7] Unfortunately, these crystals proved not to be suitable for X-ray
diffraction.
[8] Crystal size: 0.50 Â 0.50 Â 0.42 mm. Crystal data: monoclinic, space
group P21/n, a 13.5506(3), b 14.8113(4), c 17.8299(4) ä, b
95.3671(17)8, V 3562.81(15) ä3, 1calcd 1.171mgmÀ3, 2qmax 55.068,
R 0.0421 (I > 2sigma(I), wR2 (all data) 0.1035. 14766 reflections
were measured (8114 independent) and included in the refinement
against jF 2 j , using the SHELXL program[17] (392 parameters).
Lorentz and polarization corrections were applied, no absorption
correction was performed. Max. residual electron density: 0.607 eäÀ3
.
The hydrogen atoms were placed at calculated positions, and refined
isotropically in riding mode. The X-ray diffraction data were collected
at 148(2) K on a Nonius Kappa CCD diffractometer withrotating
anode using graphite monochromatized MoKa radiation (l
4722
¹ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4024-4722 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2001, 40, No. 24