4044
J. Sperry / Tetrahedron Letters 52 (2011) 4042–4044
methyl-
L
-leucine (11) to HATU and HOAt in the presence of Hünig’s
tra) associated with this article can be found, in the online version,
base,17 giving Boc-alternatamide D13 that was immediately depro-
tected with trifluoroacetic acid (TFA) in dichloromethane, gratify-
ingly affording alternatamide D (4)13 (Scheme 2). The NMR data
of natural and synthetic 4 is shown in Table 1. The amide coupling
was presumed to proceed without racemisation as a uronium-
based coupling agent was employed.17
References and notes
1. Lee, N.-K.; Fenical, W.; Lindquist, N. J. Nat. Prod. 1997, 60, 697.
2. See Refs. 3–9 in Ref. 3 below.
3. (a) Boyd, E. M.; Sperry, J. Synlett 2011, 826; (b) While this paper was under
review, a report by Grainger and co-workers describing their own investigation
into the bromination of indole-3-carboxylate appeared: Parsons, T. B.;
Ghellamallah, C.; Male, L.; Spencer, N.; Grainger, R. S. Org. Biomol. Chem.
The 1H NMR spectroscopic data of natural and synthetic 4 were
in good agreement, apart from the chemical shift of the proton at
C20 (d 3.63 vs d 2.93, Table 1). After some initial confusion, commu-
nication with the authors of the isolation paper confirmed that the
chemical shift of C20 was incorrectly quoted in the isolation report
and should in fact read d 2.91 and not d 3.63 as quoted originally.1
The 1H NMR data of synthetic and natural alternatamide D were
now in good agreement. The 13C NMR spectroscopic data were also
in good agreement with the literature values (Table 1).1,13 Sadly,
due to the length of time elapsed since its isolation from the natu-
ral source, it was not possible to obtain an authentic sample of
alternatamide D (4) for direct comparison with our synthetic
material.
4. For alternatamides A–C (1–3), the stereochemistry of the N-methylleucine side
chain was confirmed as
the N-methylleucine in alternatamide D (4) is assumed.
L L-configuration of
(20S) by degradation studies. The
5. (a) Van Lear, G. E.; Morton, G. O.; Fulmor, W. Tetrahedron Lett. 1973, 4, 299; (b)
Tasdemir, D.; Bugni, T. S.; Mangalindan, G. C.; Concepción, G. P.; Harper, M. K.;
Ireland, C. M. Z. Naturforsch., C 2002, 57, 914; (c) Pimentel, S. M. V.; Bojo, Z. P.;
Roberto, A. V. D.; Lazaro, J. E. H.; Mangalindan, G. C.; Florentino, L. M.; Lim-
Navarro, P.; Tasdemir, D.; Ireland, C. M.; Concepción, G. P. Mar. Biotechnol. 2003,
5, 395.
6. Goldstein, S.; Poissonnet, G.; Parmentier, J.-G.; Brion, J.-D.; Millan, M.; Dekeyne,
A.; Boutin, J. US Patent, 6350757, 2002; Chem. Abstr. 2001, 134, 115944.
7. Da Settimo, A.; Saettone, M. F.; Nannipieri, E.; Barili, P. Gazz. Chim. Ital. 1967, 97,
1304.
8. (a) Ohta, T.; Somei, M. Heterocycles 1989, 29, 1663; (b) Ohta, T.; Yamato, Y.;
Tahira, H.; Somei, M. Heterocycles 1987, 26, 2817; (c) Terent’ev, A. P.;
Preobrazhenskayz, A. S.; Bobkov, A. S.; Sorkina, G. M. Zh. Obshch. Khim. 1959,
29, 2541; (d) 6-Nitroindoline costs >NZ$220 for 5 g (Sigma–AldrichÒ).
9. Mollica, A.; Stefanucci, A.; Feliciani, F.; Lucente, G.; Pinnen, F. Tetrahedron Lett.
2011, 52, 2583.
10. Bagley, M. C.; Moody, C. J.; Pepper, A. G. Tetrahedron Lett. 2000, 41, 6901.
11. Bernauer, K.; Mahboobi, S. Helv. Chim. Acta 1988, 71, 2034.
12. Varma, R. S.; Kabalka, G. W. Synth. Commun. 1985, 15, 843.
13. See Supplementary data for full experimental details.
14. (a) Djura, P.; Stierle, D. B.; Sullivan, B.; Faulkner, D. J.; Arnold, E.; Clardy, J. J. Org.
Chem. 1980, 45, 1435; (b) Kochanowska, A. J.; Rao, K. V.; Childress, S.; El-Alfy,
A.; Matsumoto, R. R.; Kelly, M.; Stewart, G. S.; Sufka, K. J.; Hamann, M. T. J. Nat.
Prod. 2008, 71, 186.
15. There are limited examples of N-methylleucine being used in amide couplings
with an amine coupling partner. For one example, see: Fink, B. E.; Chen, L.;
Chen, P.; Dodd, D. S.; Gaval, A. V.; Kim, S.-H.; Vaccaro, W.; Zhang, L. H. US
Patent, 20100323994, 2009; Chem. Abstr. 2009, 151, 245681.
16. The coupling of the free base 5 with 11 led to poor yields (20–30%) of the
desired amide product. Thus, the hydrochloride salt 5ꢀHCl was used as the
amine coupling partner to ensure good yields.
In conclusion, we have disclosed an efficient synthetic route to
5,6-dibromotryptamines which has been subsequently applied to
the synthesis of the three natural products alternatamide D (4),
5,6-dibromotryptamine (5) and 5,6-dibromo-N,N-dimethyltrypta-
mine (9). Further work towards the synthesis of natural products
possessing rare halogenation patterns is in progress.
Acknowledgements
The University of Auckland for financial support (Project No.
3625886). Professor William Fenical is thanked for invaluable dis-
cussions regarding the spectroscopic data of alternatamide D (4).
Supplementary data
Supplementary data (full experimental procedures for the prep-
aration of the natural products 4, 5 and 9, along with relevant spec-
17. Han, S. Y.; Kim, Y. A. Tetrahedron 2004, 60, 2447.