756 J ournal of Medicinal Chemistry, 2002, Vol. 45, No. 4
Letters
Refer en ces
(1) Wu, J .; Grunstein, M. 25 years after the nucleosome model:
chromatin modifications. Trends Biochem. Sci. 2000, 25, 619-
623.
(2) Winston, F.; Allis, C. D. The bromodomain:
a chromatin-
targeting module? Nat. Struct. Biol. 1999, 6, 601-604.
(3) (a) Kouzarides, T. Histone acetylases and deacetylases in cell
proliferation. Curr. Opin. Genet. Dev. 1999, 9, 40-48. (b) Archer,
S. Y.; Hodin, R. A. Histone acetylation and cancer. Curr. Opin.
Genet. Dev. 1999, 9, 171-174. (c) Cress, W. D.; Seto, E. Histone
deacetylases, transcriptional control, and cancer. J . Cell. Physiol.
2000, 184, 1-16. (d) Mahlknecht, U.; Ottmann, O. G.; Hoelzer,
D. When the band begins to play: histone acetylation caught in
the crossfire of gene control. Mol. Carcinog. 2000, 27, 268-271.
(e) Kuo, M.-H.; Allis, C. A. Roles of histone acetyltransferases
and deacetylases in gene regulation. Bioessays 1998, 20, 615-
626.
(4) Yoshida, M.; Kijima, M.; Akita, M.; Beppu, T. Potent and specific
inhibition of mammalian histone deacetylase both in vivo and
in vitro by trichostatin A. J . Biol. Chem. 1990, 265, 17174-
17179.
(5) Kijima, M.; Yoshida, M.; Sugita, K.; Horinouchi, S.; Beppu, T.
Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible
inhibitor of mammalian histone deacetylase. J . Biol. Chem.
1993, 268, 22429-22435.
(6) (a) Saunders: N. A.; Popa, C.; Serewko, M. M.; J ones, S. J .;
Dicker, A. J .; Dahler, A. L. Histone deacetylase inhibitors: novel
anticancer agents. Expert Opin. Invest. Drugs 1999, 8, 1611-
1621. (b) Weidle, U. H.; Grossmann, A. Inhibition of histone
deacetylases: a new strategy to target epigenetic modifications
for anticancer treatment. Anticancer Res. 2000, 20, 1471-1485.
(7) Su, G. H.; Sohn, T. A.; Ryu, B.; Kern, S. E. A novel histone
deacetylase inhibitor identified by high-throughput transcrip-
tional screening of a compound library. Cancer Res. 2000, 60,
3137-3142.
(8) Butler, L. M.; Agus, D. B.; Scher, H. I.; Higgins, B.; Rose, A.;
Cordon-Cardo, C.; Thaler, H. T.; Rifkind, R. A.; Marks, P. A.;
Richon, V. M. Suberoylanilide hydroxamic acid, an inhibitor of
histone deacetylase, suppresses the growth of prostate cancer
cells in vitro and in vivo. Cancer Res. 2000, 60, 5165-5170.
(9) Sambucetti, L. C.; Fischer, D. D.; Zabludoff, S.; Kwon, P. O.;
Chamberlin, H.; Trogani, N.; Xu, H.; Cohen, D. Histone deacety-
lase inhibition selectively alters the activity and expression of
cell cycle proteins leading to specific chromatin acetylation and
antiproliferative effects. J . Biol. Chem. 1999, 274, 34940-34947.
(10) Schmidt, K.; Gust, R.; J ung, M. Inhibitors of histone deacetylase
suppress the growth of MCF-7 breast cancer cells. Arch. Pharm.
(Weinheim) 1999, 332, 353-357.
F igu r e 2. Model of 22 (orange), 23 (magenta), and 24 (yellow)
in the human HDAC-1 homology model. The Asp-92 terminal
carboxy group lies under the amide nitrogens of 23 and 24.
inhibition. Although 22, 23, and 24 have similar poten-
cies in our enzyme assay, the effect may be from each
compound inhibiting a different HDAC isoform (or
isoforms) in the enzyme mixture isolated from the
H1299 cell lysate. In the cell, compounds that specifi-
cally inhibit HDAC isoforms affecting cell growth regu-
latory pathways may be more effective at inhibiting cell
growth or inducing apoptosis.
Su m m a r y. For substituted benzamide analogues of
trichostatin A (1), we have shown that enzyme and
cellular potency is related to chain length, with n ) 6
optimal. Substitution at the 4-position of the benzamide
affects enzyme potency, with a 10-fold difference be-
tween the most potent and least potent homologous
hydroxamates. There is a differential response among
eight human tumor cell lines treated with the most
potent enzyme inhibitor, 23, in a p53 independent
manner, with effects ranging from growth inhibition to
cell death via apoptosis.
The analogues of SAHA (4) tested were all fairly
potent enzyme inhibitors, and all induced the p21
promoter. However, there was a clear difference in
monolayer growth inhibition among them, with 4 being
the best compound.
The differences in cellular potency of compounds with
similar enzyme activity may be due to one or more of a
number of causes. There may be differences in cellular
permeability or intracellular metabolism of the com-
pounds. Cell-line-specific induction of pro-apoptotic
genes may occur due to differential HDAC isoform
expression among the cell lines. We are currently
investigating the role of HDAC isoforms in regulating
cell growth to determine if isoform selectivity of our
inhibitors may contribute to these effects.
(11) Itoh, K.; Kori, M.; Inada, Y.; Nishikawa, K.; Kawamatsu, Y.;
Sugihara, H. Synthesis and angiotensin converting enzyme-
inhibitory activity of 1,5-benzothiazepine and 1,5-benzoxazepine
derivatives. II. Chem. Pharm. Bull. 1986, 34, 2078-2089.
(12) Bauer, U.; Ho, W.-B.; Koskinen A. M. P. A novel linkage for the
solid-phase synthesis of hydroxamic acids. Tetrahedron Lett.
1977, 38, 7233-7236.
(13) Kolle, D.; Brosch, G.; Lechner, T.; Lusser A.; Loidl, P. Biochemi-
cal methods for analysis of histone deacetylases. Methods:
Companion to Methods in Enzymology 1998, 15, 323-331.
A
(14) Alley, M. C.; Scudiero, D. A.; Monks, A.; Hursey, M. L.;
Czerwinski, M. J .; Fine, D. L.; Abbott, B. J .; Mayo, J . G.;
Shoemaker, R. H.; Boyd, M. R. Feasibility of drug screening with
panels of human tumor cell lines using a microculture tetrazo-
lium assay. Cancer Res. 1988, 48, 589-601.
(15) Representative articles: (a) Kim, J . S.; Lee, S.; Lee, T.; Lee, Y.
W.; Trepel, J . B. Transcriptional activation of p21(WAF1/CIP1)
by apicidin, a novel histone deacetylase inhibitor. Biochem.
Biophys. Res, Commun. 2001, 281, 866-871. (b) Burgess, A. J .;
Pavey, S.; Warrener, R.; Hunter, L. J .; Piva, T. J .; Musgrove, E.
A.; Saunders: N.; Parsons, P. G.; Gabrielli, B. G. Up-regulation
of p21WAF1/CIP1 by histone deacetylase inhibitors reduces their
cytotoxicity. Mol. Pharmacol. 2001, 60, 828-837. (c) Richon, V.
M.; Sandhoff, T. W.; Rifkind, R. A.; Marks, P. A. Histone
deacetylase inhibitor selectively induces p21waf1 expression and
gene-associated histone acetylation. Proc. Natl. Acad. Sci. U.S.A.
2000, 97, 10014-10019. (d) Sandor, V.; Senderowicz, A.; Mertins,
S.; Sackett, D.; Sausville, E.; Blagosklonny, M. V.; Bates, S. E.
p21-dependent G1 arrest with downregulation of cyclin D1 and
upregulation of cyclin E by the histone deacetylase inhibitor
FR901228. Br. J . Cancer 2000, 83, 817-825. (e) Kim, Y. B.; Ki,
S. W.; Yoshida, M.; Horinouchi, S. Mechanism of cell cycle arrest
caused by histone deacetylase inhibitors in human carcinoma
cells. J . Antibiot. 2000, 53, 1191-1200. (f) Xiao, H.; Hasegawa,
T.; Isobe, K. Both Sp1 and Sp3 are responsible for p21waf1
promoter activity induced by histone deacetylase inhibitor in
NIH3T3 cells. J . Cell. Biochem. 1999, 73, 291-302. (f) Archer,
S. Y.; Meng, S.; Shei, A.; Hodin, R. A. p21WAF1 is required for
butyrate-mediated growth inhibition of human colon cancer cells.
Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 6791-6796.
Su p p or tin g In for m a tion Ava ila ble: Experimental pro-
cedures including characterization data for new compounds,
biological methods, and a brief description of the molecular
modeling are reported. This material is available free of charge