Journal of the American Chemical Society
Page 4 of 6
chem.1996, 21, 135-216. (h) Fleming, S. A.; Bradford, C. L.; Gao J. J.
The kinetic data show that insufficient enantioface differ-
entiation in complex 5* is not responsible for a lack of enan-
tioselectivity with certain olefins but their low reaction rates.
With this in mind, other substrates which contain a lactam
binding motif and which show a high intermolecular reac-
tion rate should be equally suitable for enantioselectively
catalyzed intermolecular [2+2] photocycloaddition reaction.
A preliminary experiment with parent 1(2H)-isoquinolone19
and methyl vinyl ketone revealed that a high enantioselectiv-
ity can be achieved also with isoquinolone substrates
(Scheme 5). Product 817d was obtained as a single isomer in
91% ee. The conversion remained incomplete after nine
hours and varying amounts of starting material were recov-
ered. In the best case, the conversion was 86% and the yield
of product was 74% (86% based on conversion).
Regioselective and Stereoselective [2+2] Photocycloadditions. In
Organic Photochemistry,Molecular and Supramolecular Photochemis-
try, Vol. 1;Ramamurthy, V.; Schanze, K. S., Eds.; Dekker: New York,
1997; pp 187-244. (i) Bach, T. Synthesis1998, 683-703. (j) Margaretha,
P. Photocycloaddition of Cycloalk-2-enones to Alkenes. In Synthetic
Organic Photochemistry, Molecular and Supramolecular Photochem-
istry, Vol. 12; Griesbeck, A. G.; Mattay J., Eds.; Dekker: New York,
2005; pp 211-237. (k) Hehn, J. P.; Müller, C.; Bach, T. Formation of a
Four-Membered Ring: From a Carbonyl-Conjugated Alkene. In
Handbook of Synthetic Photochemistry; Albini, A.; Fagnoni, M., Eds.;
Wiley-VCH: Weinheim, 2010; pp 171-215. (l) Poplata, S.; Tröster, A.;
Zou, Y.-Q.; Bach, T. Chem. Rev.2016, 116, in press, doi:
10.1021/acs.chemrev.5b00723.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(2) Reviews: (a) Iriondo-Alberdi, J.; Greaney, M. F. Eur. J. Org.
Chem.2007, 4801-4815. (b) Hoffmann, N. Chem. Rev. 2008, 108, 1052-
1103. (c) Bach, T.; Hehn, J. P. Angew. Chem. Int. Ed. 2011, 50, 1000-
1045.
In summary, chiral thioxanthone3 was shown to be a com-
petent catalyst to mediate the enantioselective intermolecu-
lar [2+2] photocycloaddition of various quinolones and elec-
tron deficient alkenes. Association between the catalyst and
the substrate by hydrogen bonding is critical for the success
of the reaction and dissociation of the photoexcited substrate
from the catalyst is likely reponsible for a loss in enantiose-
lectivity as observed for vinyl acetate as the reaction partner.
The kinetic parameters of these processes are currently being
studied in more detail and will be reported together with
possible applications of the enantioselective [2+2] photocy-
cloaddition in due course.
(3) Schuster, D. I. Mechanistic Issues in [2+2]-Photocycloadditions
of Cyclic Enones to Alkenes. In CRC Handbook of Photochemistry
and Photobiology, 2nd ed.;Horspool, W. M., Lenci, F., Eds.; CRC Press:
Boca Raton, 2004; pp 72/1-72/24.
(4) (a) Inoue, Y. (ed.) Chiral Photochemistry, Molecular and Su-
pramolecular Photochemistry, Vol. 11; Dekker: New York, 2004. (b)
Ramamurthy, V.; Inoue, Y., Eds. Supramolecular Photohemistry;
Wiley: Hoboken, 2011.
(5) Reviews: (a) Yang, C.; Inoue, Y. Chem. Soc. Rev.2014, 43, 4123-
4143. (b) Brimioulle, R.; Lenhart, D.; Maturi, M. M.; Bach, T. Angew.
Chem. Int. Ed.2015, 54, 3872-3890.
(6) For a recent review on catalytic enantioselective [2+2] cy-
cloaddition reactions, see: Xu, Y.; Conner, M. L.; Brown, M. K. An-
gew. Chem. Int. Ed.2015, 54, 11918-11928.
Supporting Information
(7) For catalytic enantioselective (≥90% ee) intramolecular [2+2]
photocycloaddition reactions, see: (a) Müller, C.; Bauer, A.; Bach, T.
Angew. Chem. Int. Ed. 2009, 48, 6640-6642. (b) Müller, C.; Bauer, A.;
Maturi, M. M.; Cuquerella, M. C.; Miranda, M. A.; Bach, T. J. Am.
Chem. Soc.2011, 133, 16689-16697. (c) Brimioulle, R.; Guo, H.; Bach, T.
Chem. Eur. J.2012, 18, 7552-7560 (d) Brimioulle, R.; Bach, T. Sci-
ence2013, 342, 840-843. (e) Maturi, M. M.; Wenninger, M.; Alonso,
R.; Bauer, A.; Pöthig, A.; Riedle, E.; Bach, T. Chem. Eur. J.2013, 19,
7461-7472. (f) Alonso, R.; Bach, T. Angew. Chem. Int. Ed. 2014, 53,
4368-4371. (g) Vallavoju, N.; Selvakumar, S.; Jockusch, S.; Sibi, M. P.;
Sivaguru, J. Angew. Chem. Int. Ed.2014, 53, 5604-5608. (h) Vallavoju,
N.; Selvakumar, S.; Jockusch, S.; Prabhakaran, M. T.; Sibi, M. P.;
Sivaguru, J. Adv. Synth. Catal. 2014, 356, 2763-2768. (i) Brimioulle, R.;
Bach, T. Angew. Chem. Int. Ed. 2014, 53, 12921-12924. (j) Brimioulle,
R.; Bauer, A.; Bach, T. J. Am. Chem. Soc.2015, 137, 5170-5176.
(8) (a) Du, J.; Skubi, K. L.; Schultz, D. M.; Yoon, T. P. Science2014,
344, 392-396. (b) Neier, R. Science2014, 344, 368-369.
Experimental procedures, analytical data for all new com-
pounds, proof of constitution and configuration, competition
experiment, NMR spectra. This material is available free of
Corresponding Author
Notes
The authors declare no competing financial interests.
†These authors contributed equally to the project.
ACKNOWLEDGMENT
Financial support by the European Research Council under
the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 665951 − ELICOS) and the
Deutsche Forschungsgemeinschaft (Reinhart Koselleck pro-
gram) is gratefully acknowledged. AT thanks the research
training group (Graduiertenkolleg) 1626 “ChemicalPhotoca-
talysis” for a scholarship. AR acknowledges the Alexander
von Humboldt foundation for a research fellowship. Dr. S.
Breitenlechner is acknowledged for his help with the rate
measurements.
(9) Maturi, M. M.; Bach, T. Angew. Chem. Int. Ed. 2014, 53, 7661-
7664.
(10) For early work on racemic intermolecular [2+2] photocy-
cloaddition reactions of 2(1H)-quinolones, see: (a) Evanega, G. R.;
Fabiny, D. L. Tetrahedron Lett. 1968, 9, 2241-2246. (b) Loev, B.;
Goodman, M. M.; Snader, K. M. Tetrahedron Lett. 1968, 9, 5401-5404.
(c) Evanega, G. R.; Fabiny, D. L. J. Org. Chem. 1970, 35, 1757-1761. (d)
Buchardt, O.; Christensen, J. J.; Harrit, N. Acta Chem. Scand. B1976,
30, 189–192. (e) Kaneko, C.; Naito, T. Somei, M. J. Chem. Soc. Chem.
Commun.1979, 804-805. (f) Kaneko, C.; Naito, T. Chem. Pharm. Bull.
1979, 27, 2254-2256.
(11) The triplet energy (ET) of parent thioxanthone is tabulated as
ET = 265 kJ mol−1 (Murov, S. L., Carmichael, I.; Hug, G. L. Handbook
of Photochemistry, 2nd ed., Dekker: New York, 1993, p. 80).
(12) For an emission spectrum of the irradiation lamps, see ref.7f.
(13) All compounds 4a-4n have not yet been reported and were
therefore prepared in racemic form for comparison (see Supporting
Information).
REFERENCES
(1) Reviews: (a) Bauslaugh, P. G. Synthesis 1970, 287-300.(b)
Baldwin, S. W. Org. Photochem. 1981, 5, 123-225. (c) Crimmins, M. T.
Chem. Rev. 1988, 88, 1453-1473. (d) Becker, D.; Haddad, N. Org.
Photochem. 1989, 10, 1-162. (e) Crimmins, M. T.; Reinhold, T. L. Org.
React.1993, 44, 297-588. (f) Mattay, J.; Conrads, R.; Hoffmann R.
[2+2] Photocycloadditions of α,β-Unsaturated Carbonyl Compounds.
In Methoden der Organischen Chemie (Houben-Weyl), 4thed., Vol. E
21c; Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.;
Thieme: Stuttgart, 1995; pp 3087-3132. (g) Pete, J.-P. Adv. Photo-
(14) Parent 2(1H)-quinolone (carbosytril) has been previously re-
ported to react with acrylonitrile exclusively to the HT product: (a)
ref.10c. (b) Lewis, F. D.; Reddy, G. D.; Elbert, J. E.; Tillberg, B. E.;
Meltzer, J. A.; Kojima, M. J. Org. Chem.1991, 56, 5311-5318.
ACS Paragon Plus Environment