Page 5 of 6
ACS Catalysis
1
2
3
4
5
6
7
8
Bloome, K. S.; Alexanian, E. J. Palladium-Catalyzed Carbonylative Heck-Type
(5) Zou, Y.; Zhou, J. Palladium-Catalyzed Intermolecular Heck Reaction of
Alkyl Halides. Chem. Commun. 2014, 50, 3725-3728.
Reactions of Alkyl Iodides. J. Am. Chem. Soc. 2010, 132, 12823-12825. (c)
Bloome, K. S.; McMahen, R. L.; Alexanian, E. J. Palladium-Catalyzed Heck-
Type Reactions of Alkyl Iodides. J. Am. Chem. Soc. 2011, 133, 20146-20148. (d)
McMahon, C. M.; Alexanian, E. J. Palladium-Catalyzed Heck-Type Cross-
Couplings of Unactivated Alkyl Iodides. Angew. Chem. Int. Ed. 2014, 53, 5974-
5977. (e) Parasram, M.; Iaroshenko, V. O.; Gevorgyan, V. Endo-Selective Pd-
Catalyzed Silyl Methyl Heck Reaction. J. Am. Chem. Soc. 2014, 136, 17926-
17929. (f) Feng, Z.; Min, Q. Q.; Zhao, H. Y.; Gu, J. W.; Zhang, X. A General
Synthesis of Fluoroalkylated Alkenes by Palladium-Catalyzed Heck-Type
Reaction of Fluoroalkyl Bromides. Angew. Chem. Int. Ed. 2015, 54, 1270-1274.
(g) Carbonylative Heck-type alkylation: Sumino, S.; Ui, T.; Hamada, Y.;
Fukuyama, T.; Ryu, I. Carbonylative Mizoroki-Heck Reaction of Alkyl Iodides
with Arylalkenes Using a Pd/Photoirradiation System. Org. Lett. 2015, 17,
4952-4955. (h) Dong, X.; Han, Y.; Yan, F.; Liu, Q.; Wang, P.; Chen, K.; Li, Y.;
Zhao, Z.; Dong, Y.; Liu, H. Palladium-Catalyzed 6-Endo Selective Alkyl-Heck
Reactions: Access to 5-Phenyl-1,2,3,6-tetrahydropyridine Derivatives. Org. Lett.
2016, 18, 3774-3777. (i) Kurandina, D.; Parasram, M.; Gevorgyan, V. Visible
Light-Induced Room-Temperature Heck Reaction of Functionalized Alkyl
Halides with Vinyl Arenes/Heteroarenes. Angew. Chem. Int. Ed. 2017, 56,
14212-14216. (j) Venning, A. R. O.; Kwiatkowski, M. R.; Roque Peña, J. E.;
Lainhart, B. C.; Guruparan, A. A.; Alexanian, E. J. Palladium-Catalyzed
Carbocyclizations of Unactivated Alkyl Bromides with Alkenes Involving Auto-
tandem Catalysis. J. Am. Chem. Soc. 2017, 139, 11595-11600. (k) Wang, G.-Z.;
Shang, R.; Cheng, W.-M.; Fu, Y. Irradiation-Induced Heck Reaction of
Unactivated Alkyl Halides at Room Temperature. J. Am. Chem. Soc. 2017, 139,
18307-18312. (l) Kurandina, D.; Rivas, M.; Radzhabov, M.; Gevorgyan, V.
Heck Reaction of Electronically Diverse Tertiary Alkyl Halides. Org. Lett. 2018,
20, 357-360. (m) Wang, G.-Z.; Shang, R.; Fu, Y. Irradiation-Induced Palladium-
(6) Examples: (a) Chini, M.; Crotti, P.; Gardelli, C.; Macchia, F. Regio- and
Stereoselective Synthesis of β-Halohydrins from 1,2-Epoxides with Ammonium
Halides in the Presence of Metal Salts. Tetrahedron 1992, 48, 3805-3812. (b)
Zhao, Y.; Weix, D. J. Nickel-Catalyzed Regiodivergent Opening of Epoxides
with Aryl Halides: Co-Catalysis Controls Regioselectivity. J. Am. Chem. Soc.
2014, 136, 48-51.
(7) Liu, Q.; Dong, X.; Li, J.; Xiao, J.; Dong, Y.; Liu, H. Recent Advances on
Palladium Radical Involved Reactions. ACS Catal. 2015, 5, 6111-6137.
(8) CCDC 1570943, 1556727, 1816547 and 1815718 contain the
supplementary crystallographic data of compounds 3i, 4b, 6f and 6f' for this
paper. .
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(9) Kim, J.-H.; Kulawiec, R. J.
A Tandem Epoxide Isomerization-Aldol
Condensation Process Catalyzed by Palladium Acetate−Tributylphosphine. J.
Org. Chem. 1996, 61, 7656-7657.
(10) Lecomte, P.; Drapier, I.; Dubois, P.; Teyssié, P.; Jérôme, R. Controlled
Radical Polymerization of Methyl Methacrylate in the Presence of Palladium
Acetate, Triphenylphosphine, and Carbon Tetrachloride. Macromolecules 1997,
30, 7631-7633.
(11) Piva, O. Direct Conversion of Bromohydrins to Ketones. Tetrahedron Lett.
1992, 33, 2459-2460.
(12) Gharpure, S. J.; Vishwakarma, D. S.; Nanda, S. K. Lewis Acid Mediated
“endo-dig” Hydroalkoxylation–Reduction on Internal Alkynols for the
Stereoselective Synthesis of Cyclic Ethers and 1,4-Oxazepanes. Org. Lett. 2017,
19, 6534-6537.
(13) Halgren, T. A.; Roberts, J. D.; Horner, J. H.; Martinez, F. N.; Tronche, C.;
Newcomb, M. Kinetics and Equilibrium Constants for Reactions of α-Phenyl-
Substituted Cyclopropylcarbinyl Radicals. J. Am. Chem. Soc. 2000, 122, 2988-
2994.
Catalyzed
Decarboxylative
Heck
Reaction
of
Aliphatic
N-
(Acyloxy)phthalimides at Room Temperature. Org. Lett. 2018, 20, 888-891. (n)
Sumino, S.; Uno, M.; Huang, H.-J.; Wu, Y.-K.; Ryu, I. Palladium/Light Induced
Radical Alkenylation and Allylation of Alkyl Iodides Using Alkenyl and Allylic
Sulfones. Org. Lett. 2018, 20, 1078-1081.
(3) (a) Ikeda, Y.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. Cobalt-Mediated
Mizoroki-Heck-Type Reaction of Epoxide with Styrene. Adv. Synth. Catal.
2004, 346, 1631-1634. (b) Prina Cerai, G.; Morandi, B. Atom-Economical
Cobalt-Catalysed Regioselective Coupling of Epoxides and Aziridines with
Alkenes. Chem. Commun. 2016, 52, 9769-9772.
(4) Cp2ZrCl-catalyzed intermolecular reactions of epoxides and acrylates
involved epoxide-derived radicals, but did not produce alkenes as final products.
(a) Gansäuer, A.; Bluhm, H.; Rinker, B.; Narayan, S.; Schick, M.; Lauterbach,
T.; Pierobon, M. Reagent-Controlled Stereoselectivity in Titanocene-Catalyzed
Epoxide Openings: Reductions and Intermolecular Additions to α,β-
Unsaturated Carbonyl Compounds. Chem.–Eur. J. 2003, 9, 531-542. (b)
Daasbjerg, K.; Svith, H.; Grimme, S.; Gerenkamp, M.; Mück-Lichtenfeld, C.;
Gansäuer, A.; Barchuk, A.; Keller, F. Elucidation of the Mechanism of
Titanocene-Mediated Epoxide Opening by a Combined Experimental and
Theoretical Approach. Angew. Chem. Int. Ed. 2006, 45, 2041-2044. (c)
Gansäuer, A.; Barchuk, A.; Keller, F.; Schmitt, M.; Grimme, S.; Gerenkamp, M.;
Mück-Lichtenfeld, C.; Daasbjerg, K.; Svith, H. Mechanism of Titanocene-
Mediated Epoxide Opening through Homolytic Substitution. J. Am. Chem. Soc.
2007, 129, 1359-1371.
(14) (a) Kramer, A. V.; Labinger, J. A.; Bradley, J. S.; Osborn, J. A. Mechanistic
Studies of Oxidative Addition to Low-Valent Metal Complexes. III. Mechanism
of Formation of Platinum to Carbon Bonds. J. Am. Chem. Soc. 1974, 96, 7145-
7147. (b) Kramer, A. V.; Osborn, J. A. Mechanistic Studies of Oxidative
Addition to Low Valent Metal Complexes. IV. CIDNP Effects in Platinum(0)
and Palladium(0) Reactions. J. Am. Chem. Soc. 1974, 96, 7832-7833.
(15) (a) Jahn, U. Radicals in Transition Metal Catalyzed Reactions? Transition
Metal Catalyzed Radical Reactions?: A Fruitful Interplay Anyway. Top. Curr.
Chem. 2012, 320, 323–452. (b) Sumino, S.; Fusano, A.; Fukuyama, T.; Ryu, I.
Carbonylation Reactions of Alkyl Iodides through the Interplay of Carbon
Radicals and Pd Catalysts. Acc. Chem. Res. 2014, 47, 1563-1574.
(16) Citterio, A.; Arnoldi, A.; Minisci, F. Nucleophilic Character of Alkyl
Radicals. 18. Absolute Rate Constants for the Addition of Primary Alkyl
Radicals to Conjugated Olefins and 1,4-Benzoquinone. J. Org. Chem. 1979, 44,
2674-2682.
(17) Chuentragool, P.; Parasram, M.; Shi, Y.; Gevorgyan, V. General, Mild, and
Selective Method for Desaturation of Aliphatic Amines. J. Am. Chem. Soc. 2018,
140, 2465-2468.
(18) Half-wave oxidation potential of PhC·H(Me) is +0.37 V vs SCE in MeCN:
Wayner, D. D. M.; McPhee, D. J.; Griller, D. Oxidation and Reduction
Potentials of Transient Free Radicals. J. Am. Chem. Soc. 1988, 110, 132-137.
ACS Paragon Plus Environment