30
S. Endo et al. / Archives of Biochemistry and Biophysics 527 (2012) 23–30
[10] D. Dondi, M. Piccolella, A. Biserni, S. Della Torre, B. Ramachandran, A. Locatelli,
P. Rusmini, D. Sau, D. Caruso, A. Maggi, P. Ciana, A. Poletti, Endocr. Relat.
Cancer 17 (2010) 731–742.
[11] M. Wang, Y. He, L.N. Eisenman, C. Fields, C.M. Zeng, J. Mathews, A. Benz, T. Fu,
E. Zorumski, J.H. Steinbach, D.F. Covey, C.F. Zorumski, S. Mennerick, J. Neurosci.
22 (2002) 3366–3375.
endogenous steroids and cytotoxic aldehydes rather than that of
xenobiotic carbonyl compounds.
The results of the mutagenesis of F303Q/M304S have revealed
that both Phe303 and Met304 play critical roles in recognition of
3-ketosteroid substrates by AKR1B19, although other residues are
probably involved in the steroid binding because of lack of com-
plete abolishment of reductive 3b-HSD activity by the mutagene-
sis. The two residues are present in a so-called C-terminal loop of
the tertiary structures of enzymes of the AKR superfamily, in which
amino acid difference in this and other two loop regions between
different enzymes has been suggested to determine the substrate
specificity of the enzymes [2,41]. In the crystal structures of HSDs
belonging to the AKR1C subfamily, apolar residues (at positions
306, 308 and 310) in the C-terminal loop interact the steroidal sub-
strates or inhibitors [15,41]. The C-terminal loop of AKR1B1 is crit-
ical for catalytic efficiency and substrate specificity [52], and a role
of Cys304, a C-terminal loop residue of AKR1B10, in binding of the
cyclohexene ring of all-trans-retinal has been shown by crystallo-
graphic and site-directed mutagenesis studies [40,43]. Based on
the present mutations and the crystal structure of AKR1B10, the
binding mode of the 3-ketosteroids in AKR1B19 can be speculated
as follows. The 3-keto group on the A ring of the steroid must be
close to the catalytic residues of Tyr48 and His111, so that the
opposite side of this steroid molecule may orientate towards
hydrophobic residues, Phe303 and Met304 to form hydrophobic
interactions. The formation of this hydrophobic interaction is sup-
ported by no significant effects of the F303Q/M304S mutation on
the kinetic constants for the smaller and more hydrophilic sub-
strates, methylglyoxal and pyridine-3-aldehyde. Structural studies
using molecular modeling techniques and crystallization of
AKR1B19 complexed with the coenzyme and steroid are now in
progress in order to clarify the steroid recognition of the rabbit en-
zyme leading to efficient 3b-HSD activity.
[12] M. Matsunaga, K. Okuhara, K. Ukena, K. Tsutsui, Brain Res. 1007 (2004) 160–
166.
[13] M.W. McBride, A.J. McVie, S.M. Burridge, B. Brintnell, N. Craig, A.M. Wallace,
R.H. Wilson, J. Varley, R.G. Sutcliffe, Genomics 61 (1999) 277–284.
[14] S. Endo, S. Maeda, T. Matsunaga, U. Dhagat, O. El-Kabbani, N. Tanaka, K.T.
Nakamura, K. Tajima, A. Hara, Arch. Biochem. Biophys. 481 (2009) 183–190.
[15] J.F. Couture, P. Legrand, L. Cantin, L. Labrie, V. Luu-The, R. Breton, J. Mol. Biol.
339 (2004) 89–102.
[16] D.R. Schmidt, S. Schmidt, S.R. Holmstrom, M. Makishima, R.T. Yu, C.L.
Cummins, D.J. Mangelsdorf, S.A. Kliewer, J. Biol. Chem. 286 (2011) 2425–2432.
[17] S. Endo, T. Matsunaga, H. Mamiya, C. Ohta, M. Soda, Y. Kitade, K. Tajima, H.T.
Zhao, O. El-Kabbani, A. Hara, Arch. Biochem. Biophys. 487 (2009) 1–9.
[18] S. Endo, T. Matsunaga, H. Mamiya, A. Hara, Y. Kitade, K. Tajima, O. El-Kabbani,
Chem. Biol. Interact. 178 (2009) 151–157.
[19] S. Endo, T. Matsunaga, A. Fujita, K. Tajima, O. El-Kabbani, A. Hara, Biol. Pharm.
Bull. 33 (2010) 1886–1890.
[20] S. Endo, T. Matsunaga, T. Kuragano, S. Ohno, Y. Kitade, K. Tajima, O. El-Kabbani,
A. Hara, Arch. Biochem. Biophys. 503 (2010) 230–237.
[21] Z. Kabututu, M. Manin, J.C. Pointud, T. Maruyama, N. Nagata, S. Lambert, A.M.
Lefrançois-Martinez, A. Martinez, Y. Urade, J. Biochem. 145 (2009) 161–168.
[22] S. Lambert-Langlais, J.C. Pointud, A.M. Lefrançois-Martinez, F. Volat, M. Manin,
F. Coudoré, P. Val, I. Sahut-Barnola, B. Ragazzon, E. Louiset, C. Delarue, H.
Lefebvre, Y. Urade, A. Martinez, PLoS One 4 (2009) e7309.
[23] M. Soda, D. Hu, S. Endo, M. Takemura, J. Li, R. Wada, S. Ifuku, H.T. Zhao, O. El-
Kabbani, S. Ohta, K. Yamamura, N. Toyooka, A. Hara, T. Matsunaga, Eur. J. Med.
Chem. 48 (2012) 321–329.
[24] K. Tajima, M. Hashizaki, K. Yamamoto, T. Mizutani, Drug Metab. Dispos. 20
(1992) 816–820.
[25] K. Matsuura, Y. Deyashiki, Y. Bunai, I. Ohya, A. Hara, Arch. Biochem. Biophys.
328 (1996) 265–271.
[26] M.P. Doyle, M. Yan, ARKIVOC Part viii (2002) 180–185.
[27] J.A. Doorn, S.K. Srivastava, D.R. Petersen, Chem. Res. Toxicol. 16 (2003) 1418–
1423.
[28] R. Grée, H. Toubah, R. Carrié, Tetrahedron Lett. 27 (1986) (1986) 4983–4986.
[29] D. Rindgen, M. Nakajima, S. Wehrli, K. Xu, I.A. Blair, Chem. Res. Toxicol. 12
(1999) 1195–1204.
[30] A. Garcia-Perez, B. Martin, H.R. Murphy, S. Uchida, H. Murer, B.D. Cowley Jr, J.S.
Handler, M.B. Burg, J. Biol. Chem. 264 (1989) 16815–16821.
[31] J. Sambrook, E.F. Fritsch, T. Maniatis, Molecular Cloning: A Laboratory Manual,
second ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989.
[32] S. Endo, T. Matsunaga, K. Kitade, S. Ohno, K. Tajima, O. El-Kabbani, A. Hara,
Biochem. Biophys. Res. Commun. 377 (2008) 1326–1330.
[33] X. Parés, P. Julià, Methods Enzymol. 189 (1990) 436–441.
[34] N. Tanaka, K. Aoki, S. Ishikura, M. Nagano, Y. Imamura, A. Hara, K.T. Nakamura,
Structure 16 (2008) 388–397.
[35] M. Takemura, S. Endo, T. Matsunaga, M. Soda, H.-T. Zhao, O. El-Kabbani, K.
Tajima, M. Iinuma, A. Hara, J. Nat. Prod. 74 (2011) 1201–1206.
[36] S. Endo, T. Matsunaga, K. Kuwata, H.-T. Zhao, O. El-Kabbani, Y. Kitade, A. Hara,
Bioorg. Med. Chem. 18 (2010) 2485–2490.
[37] T. Matsunaga, S. Endo, M. Soda, H.-T. Zhao, O. El-Kabbani, K. Tajima, A. Hara,
Biochem. Biophys. Res. Commun. 389 (2009) 128–132.
Acknowledgments
This work was partly founded by Grant-in-aid for Young Scien-
tists (B) and Scientific Research (C) from the Japan Society for the
Promotion of Science, and by a Sasakawa Scientific Research Grant
from Japan Science Society.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
[38] G. Branlant, Eur. J. Biochem. 129 (1982) 99–104.
[39] B. Wermuth, Prog. Clin. Biol. Res. 174 (1985) 209–230.
[40] O. Gallego, F.X. Ruiz, A. Ardèvol, M. Domínguez, R. Alvarez, A.R. de Lera, C.
Rovira, J. Farrés, I. Fita, X. Parès, Proc. Natl. Acad. Sci. USA 104 (2007) 20764–
20769.
References
[41] J.M. Jez, M.J. Bennett, B.P. Schlegel, M. Lewis, T.M. Penning, Biochem. J. 326
(1997) 625–636.
[42] J.K. Salabei, X.P. Li, J.M. Petrash, A. Bhatnagar, O.A. Barski, Chem. Biol. Interact.
191 (2011) 177–184.
[43] F.X. Ruiz, S. Porté, X. Parés, J. Farrés, Front. Pharmacol. 3 (2012) 58.
[44] T. Matsunaga, S. Endo, M. Takemura, M. Soda, K. Yamamura, K. Tajima, O. El-
Kabbani, A. Hara, Drug Metab. Pharmacokinet. (in press).
[1] J. Simard, M.-L. Ricketts, S. Gingras, P. Soucy, F.A. Feltus, M.H. Melner, Endocr.
Rev. 26 (2005) 525–582.
[2] O.A. Barski, S.M. Tipparaju, A. Bhatnagar, Drug Metab. Rev. 40 (2008) 553–624.
[3] U. Oppermann, C. Filling, M. Hult, N. Shafqat, X. Wu, M. Lindh, J. Shafqat, E.
Nordling, Y. Kallberg, B. Persson, H. Jörnvall, Chem. Biol. Interact. 143–144
(2003) 247–253.
[4] S. Steckelbroeck, Y. Jin, S. Gopishetty, B. Oyesanmi, T.M. Penning, J. Biol. Chem.
279 (2004) 10784–10795.
[5] S. Törn, P. Nokelainen, R. Kurkela, A. Pulkka, M. Menjivar, S. Ghosh, M. Coca-
Prados, H. Peltoketo, V. Isomaa, P. Vihko, Biochem. Biophys. Res. Commun. 305
(2003) 37–45.
[6] T. Matsunaga, S. Endo, S. Maeda, S. Ishikura, K. Tajima, N. Tanaka, K.T.
Nakamura, Y. Imamura, A. Hara, Arch. Biochem. Biophys. 477 (2008) 339–347.
[7] Z. Weihua, S. Makela, L.C. Andersson, S. Salmi, S. Saji, J.I. Webster, E.V. Jensen, S.
Nilsson, M. Warner, J.A. Gustafsson, Proc. Natl. Acad. Sci. USA 98 (2001) 6330–
6335.
[45] H.J. Martin, E. Maser, Chem. Biol. Interact. 178 (2009) 145–150.
[46] S. Endo, T. Matsunaga, A. Fujita, T. Kuragano, M. Soda, J. Sundaram, U. Dhagat,
K. Tajima, O. El-Kabbani, A. Hara, Biochimie 93 (2011) 1476–1486.
[47] K. Kamada, S. Goto, T. Okunaga, Y. Ihara, K. Tsuji, Y. Kawai, K. Uchida, T. Osawa,
T. Matsuo, I. Nagata, T. Kondo, Free Radic. Biol. Med. 37 (2004) 1875–1884.
[48] H. Esterbauer, R.J. Schaur, H. Zollner, Free Radic. Biol. Med. 11 (1991) 81–128.
[49] E.K. Long, M.J. Picklo Sr, Free Radic. Biol. Med. 49 (2010) 1–8.
[50] J.C. Warren, G.L. Murdock, Y. Ma, S.R. Goodman, W.E. Zimmer, Biochemistry 32
(1993) 1401–1406.
[51] D.J. Hyndman, R. Takenoshita, N.L. Vera, S.C. Pang, T.G. Flynn, J. Biol. Chem. 272
(1997) 13286–13291.
[52] K.M. Bohren, C.E. Grimshaw, K.H. Gabbay, J. Biol. Chem. 267 (1992) 20965–
20970.
[8] R.J. Handa, T.R. Pak, A.E. Kudwa, T.D. Lund, L. Hinds, Horm. Behav. 53 (2008)
741–752.
[9] N. Sugiyama, P.R. Barros, M. Warner, J.A. Gustafsson, Trends Endocrinol. Metab.
21 (2010) 545–552.