4
Tetrahedron
To gain an insight into the reaction mechanism, 2.0 equiv.
806. (c) Popoff, I. C.; Denver, J. L. J. Org. Chem. 1969, 34, 1128;
(d) Gancarz, R. A.; Kice, J. L.; Tetrahedron Lett. 1980, 21, 4155;
(e) Hopkins, P. B.; Fuchs, P. L. J. Org. Chem. 1978, 43, 1208; (f)
Kirihara, M.; Yamamoto, J.; Noguchi, T.; Hirai, Y. Tetrahedron
Lett. 2009, 50, 1180; (g) Huang, X.; Duan, D. H.; Zheng, W. X. J.
Org. Chem. 2003, 68, 1958.
radical scavenger reagent, 2,2,6,6-tetramethyl-1-piperidinyloxy
(TEMPO), was introduced into the standard reaction system
(Scheme 4). Obviously, the reaction was inhibited and no product
2aa was obtained, which indicated that a free radical process
might be involved of this transformation.
4. (a) Zhang, N.; Yang, D.; Wei, W.; Yuan, L.; Cao, Y.; Wang, H.
RSC Adv. 2015, 5, 37013; (b) Meyer, A. U.; Jäger, S.; Hari, D. P. ;
Künig, B. Adv. Synth. Catal. 2015, 357, 2050; (c) Tang, S.; Wu,
Y.; Liao, W.; Bai, R.; Liu, C.; Lei, A. Chem. Commun. 2014, 50,
4496; (d) Li, X.; Xu, Y.; Wu, W.; Jiang, C.; Qi, C.; Jiang, H.
Chem. Eur. J. 2014, 20, 7911; (e) Gao, X.; Pan, X.; Gao, J.;
Huang, H.; Yuan, G.; Li, Y. Chem. Commun. 2015, 51, 210; (f)
Fan, W.; Su, J.; Shi, D.; Feng, B. Tetrahedron 2015, 71, 6740; (g)
Sawangphon, T.; Katrun, P.; Chaisiwamongkhol, K.; Pohmakotr,
M.; Reutrakul, V.; Jaipetch, T.; Soorukram, D.; Kuhakarn, C.
Synth. Commun. 2013, 43, 1692.
On the basis of the results above and previous related
literature,10,11 a plausible mechanism is proposed (Scheme 5).
Initially, intermediate A was formed in the presence of
PhI(OAc)2, which might generate arylsulfonyl radical and
nitrogen-centered radical B resonating with carbon-centered
radical B’ by means of N-S bond cleavage. Subsequently, radical
C could be readily accessed with the release of molecular
nitrogen from radical B’. Next, the recombination of arylsulfonyl
radical produced from previous steps with radical C would
generate intermediate D for the steric hindrance, or intermediate
D’ when R2 was hydrogen atom. Eventually, α- or β-substituted
vinyl sulfones 2 were obtained via reductive elimination of
complex D or D’ under base conditions. Studies of the more
detailed mechanism of this process are ongoing.
5. (a) Xu, Y.; Zhao, J.; Tang, X.; Wu, W.; Jiang, H. Adv. Synth.
Catal. 2014, 356, 2029; (b) Taniguchi, N. Tetrahedron 2014, 70,
1984; (c) Li, X.; Shi, X.; Fang M.; Xu, X. J. Org. Chem. 2013, 78,
9499; (d) Li, X.; Xu, X.; Shi, X. Tetrahedron Lett. 2013, 54, 3071;
(f) Rong, G.; Mao, J.; Yan, H.; Zheng Y.; Zhang, G. J. Org.
Chem. 2015, 80, 4697; (g) Li, S.; Li, X.; Yang F.; Wu, Y. Org.
Chem. Front. 2015, 2, 1076; (h) Xi, Y.; Dong, B.; McClain, E. J.;
Wang, Q.; Gregg, T. L.; Akhmedov, N. G.; Petersen, J. L.; Shi, X.
Angew. Chem. Int. Ed. 2014, 53, 4657; (i) Wei, W.; Li, J.; Yang,
D.; Wen, J.; Jiao, Y.; You, J.; Wang, H. Org. Biomol. Chem. 2014,
12, 1861; (j) Wei, W.; Wen, J.; Yang, D.; Jing, H.; You, J.; Wang,
H. RSC Adv. 2015, 5, 4416; (k) Jiang Y. J.; Loh, T. P. Chem. Sci.
2014, 5, 4939; (l) Xue, Q.; Mao, Z.; Shi, Y.; Mao, H.; Cheng, Y.;
Zhu, C. Tetrahedron Lett. 2012, 53, 1851.
In summary, we have developed a novel and practical method
for the synthesis of (E)-vinyl sulfones via PhI(OAc)2-mediated
decomposition of N-arylsulfonyl hydrazones. The reaction
regioselectivity was affected by the steric hindrance at β-position
of the substrates, namely α- or β-substituted vinyl sulfones were
generated depending on whether the β-position of the substrates
with a substituted group or not. Preliminary mechanistic study
indicated that the reaction procedure might undergo a radical
pathway. It is noted that this transformation futures metal-free,
nontoxic mediator, mild condition, broad substrate scope,
excellent E stereoselectivity and high yield, which represents an
environmentally and efficient access to the C–S bond
construction.
6. Chawla, R.; Kapoor, R.; Singh A. K.; Yadav, L. D. S. Green
Chem. 2012, 14, 1308.
7. Tang, X.; Huang, L.; Xu, Y.; Yang, J.; Wu W.; Jiang, H. Angew.
Chem. Int. Ed. 2014, 53, 4205.
8. (a) Guo, R.; Gui, Q.; Wang, D.; Tan, Z. Catal. Lett. 2014, 144,
1377; (b) Jiang, Q.; Xu, B.; Jia, J.; Zhao, A.; Zhao, Y. R.; Li, Y.
Y.; He, N. N.; Guo, C. C. J. Org. Chem. 2014, 79, 7372; (c)
Rokade, B. V. and Prabhu, K. R. J. Org. Chem. 2014, 79, 8110;
(d) Xu, Y.; Tang, X.; Hu, W.; Wu, W.; Jiang, H. Green Chem.
2014, 16, 3720; (e) Chen, J.; Mao, J.; Zheng, Y.; Liu, D.; Rong,
G.; Yan, H.; Zhang, C.; Shi, D. Tetrahedron 2015, 71, 5059; (f)
Gao, J.; Lai, J.; Yuan, G. RSC Adv. 2015, 5, 66723; (g) Katrun, P.;
Hlekhlai, S.; Meesin, J.; Pohmakotr, M.; Reutrakul, V.; Jaipetch,
T.; Soorukram, D.; Kuhakarn, C. Org. Biomol. Chem. 2015, 13,
4785; (h) Rong, G.; Mao, J.; Yan, H.; Zheng, Y.; Zhang, G. J.
Org. Chem. 2015, 80, 7652; (i) Singh, R.; Allam, B. K.; Singh, N.;
Kumari, K.; Singh, S. K.; Singh, K. N. Org. Lett. 2015, 17, 2656.
9. (a) Shao, Z. and Zhang, H. Chem. Soc. Rev. 2012, 41, 560; (b)
Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2013, 46, 236; (c)
Li, X.; Liu, X.; Chen, H.; Wu, W.; Qi, C.; Jiang, H. Angew. Chem.
Int. Ed. 2014, 53, 14485; (d) Liu, Z.; Tan, H.; Wang, L.; Fu, T.;
Xia, Y.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2015, 54,
3056; (e) Xiong, W.; Qi, C.; He, H.; Ouyang, L.; Zhang, M.;
Jiang, H. Angew. Chem. Int. Ed. 2015, 54, 1.
Acknowledgments
The authors gratefully acknowledge the financial support from
the National Natural Science Foundation of China (21102003)
and National Natural Science Foundation of Anhui Province
(1608085MB38).
References and notes
1. (a) Meadows, D. C.; Mathews, T. B.; North, T. W.; Hadd, M. J.;
Kuo, C. L.; Neamati, N.; Gervay-Hague, J. J. Med. Chem. 2005,
48, 4526; (b) Meadows, D. C.; Sanchez, T.; Neamati, N.; North,
T. W.; Gervay-Hague, J. Bioorg. Med. Chem. 2007, 15, 1127; (c)
Newton, A. S.; Gloria, P. M. C.; Goncalves, L. M.; Dos Santos, D.
J. V. A.; Moreira, R.; Guedes, R. C.; Santos, M. M. M. Eur. J.
Med. Chem. 2010, 45, 3858; (d) Dunny, E.; Doherty, W.; Evans,
P.; Malthouse, J. P. G.; Nolan, D.; Knox, A. J. S. J. Med. Chem.
2013, 56, 6638; (e) Woo, S. Y.; Kim, J. H.; Moon, M. K.; Han, S.
H.; Yeon, S. K.; Choi, J. W.; Jang, B. K.; Song, H. J.; Kang, Y.
G.; Kim, J. W.; Lee, J.; Kim, D. J.; Hwang, O.; Park, K. D. J.
Med. Chem. 2014, 57, 1473; (f) Doherty, W.; James, J.; Evans, P.;
Martin, L.; Adler, N.; Nolanb, D.; Knox, A. Org. Biomol. Chem.
2014, 12, 7561.
10. Ojha D. P. and Prabhu, K. R. Org. Lett. 2015, 17, 18.
11. Mao, S.; Gao, Y. R.; Zhu, X. Q.; Guo, D. D.; Wang, Y. Q. Org.
Lett. 2015, 17, 1692.
Supplementary Material
Supplementary material associated with this article can be found,
in the online version, at....
2. (a) Kumamoto, H.; Deguchi, K.; Wagata, T.; Furuya, Y.;
Odanaka, Y.; Kitade, Y.; Tanaka, H. Tetrahedron 2009, 65, 8007;
(b) Zhu, Q.; Lu, Y. Org. Lett. 2009, 11, 1721; (c) Arjona, O.;
Menchaca, R.; Plumet, J. Org. Lett. 2001, 3, 107; (d) Noshi, M.
N.; Elawa, A.; Torres, E.; Fuchs, P. L. J. Am. Chem. Soc. 2007,
129, 11242; (e) Wardrop, D. J.; Fritz, J. Org. Lett. 2006, 8, 3659;
(f) Sulzer-Mossé, S.; Alexakis, A.; Mareda, J.; Bollot, G.;
Bernardinelli, G.; Filinchuk, Y. Chem.-Eur. J. 2009, 15, 3204; (g)
López-Pérez, A.; Robles-Machin, R.; Adrio, J.; Carretero, J. C.
Angew. Chem., Int. Ed. 2007, 46, 9261.
3. (a) Chodroff, S.; Whitmore, W. F. J. Am. Chem. Soc. 1950, 72,
1073; (b) Happer, D. A. R.; Steenson, B. E. Synthesis 1980, 10,