Diazocinones: Synthesis and Conformational Analysis
SCHEME 1. 1,2,4,5-Tetrazines as Precursors to
Dihydrodiazocinone (7) and Isoxazolyl-Substituted
Dihydrodiazocinone (1)
FIGURE 1. Synthesized dihydrodiazocinones 1a-h were obtained
in crude conformational ratios (kinetic vs thermodynamic) varying from
∼1:1 to ∼4:1.
regiochemical issues, this R group is best placed at C3 of the
enolate, which should then deliver 7 (via 2 + 3 f 7) with the
R group at C6, as depicted. Given our experience with various
isoxazolylcyclobutanone syntheses,7 we set out to prepare a
series of novel isoxazolyl-substituted dihydrodiazocinones (2
+ 3 f 1a-h; Figure 1) in the belief that the eight-membered
ring diaza heterocycles would have relatively few low-energy,
conformationally accessible states and, in turn, limited confor-
mational flexibility, a concept that is important in understanding
small molecule-receptor interactions.8 If correct, the rigidity of
the dihydrodiazocinone skeleton would cause the adorning
functional groups (Ar1 and R2) to be displayed in reliable spatial
arrangements about the eight-membered ring.
investigations.3 In earlier work, as shown in Scheme 1, we
reported that 1,2,4,5-tetrazines (2) condense with acyclic enolate
nucleophiles (4) in prototic solvent to give, after nitrogen
extrusion and dehydration, pyridazine 5.4a Conversely, when
the carbon nucleophile is derived from cyclobutanone (6),
condensation is followed by nitrogen extrusion and [4.2.0] ring
expansion to 7.4b
The biological connotations5 of cyclooctyl-based compounds
coupled with the rich and diverse implications of cyclooctyl-
based conformational effects6 have interested us in both the
chemistry and structural implications of modifying the conden-
sation of 1,2,4,5-tetrazines 2 with enolate 6 (route to 7) by
placing a substituent on enolate 6 (R * Η). To avoid
Results and Discussion
Following literature methods,4,5 the 1,2,4,5-tetrazine deriva-
tives required for this study were prepared as depicted in Scheme
2. Aryl nitriles were treated with hydrazine and catalytic
elemental sulfur in refluxing ethanol to give dihydro-[1,2,4,5]-
tetrazines 8a-d. These crude dihydro intermediates were
subsequently oxidized with sodium nitrite in acetic acid to yield
the vibrantly purple tetrazines 2a-d.
Concurrently, the requisite isoxazolylcyclobutanones 3 were
synthesized following protocols developed in our laboratory
(Scheme 3).7 Briefly, treatment of allyl phenyl sulfone with 2
equiv of n-butyllithium, followed by addition of epichlorohydrin,
delivered 3-benzenesulfonyl-3-vinylcyclobutanol 9. Next, em-
ploying the Huisgen method for in situ nitrile oxide generation
(oxime + sodium hypochlorite),9 the alkene moiety of 9
underwent a 1,3-dipolar cycloaddition to give 10 (phenyl- and
4-methoxyphenyl-oximes were employed). At this point, the
cyclobutanol was oxidized to the cyclobutanone under Swern
(3) (a) Hughes, G.; Wang, C.; Batsanov, A. S.; Fern, M.; Frank, S.; Bryce,
M. R.; Perepichka, I. F.; Monkman, A. P.; Lyons, B. P. Org. Biomol. Chem.
2003, 1, 3069-3077. (b) Soloducho, J.; Doskocz, J.; Cabaj, J.; Roszak, S.
Tetrahedron 2003, 59, 4761-4766. (c) Pintore, M.; Piclin, N.; Benfenati,
E.; Gini, G.; Chretien, J. R. EnViron. Toxicol. Chem. 2003, 22, 983-991.
(d) Zhou, X.; Kovalev, E. G.; Klug, J. T.; Khodorkovsky, V. Org. Lett.
2001, 3, 1725-1727. (e) Rusinov, G. L.; Ishmetova, R. I.; Latosh, N. I.;
Ganebnych, I. N.; Chupakhin, O. N.; Potemkin, V. A. Russ. Chem. Bull.
2000, 49, 355-362. (f) Spanget-Larsen, J.; Thulstrup, E. W.; Waluk, J.
Chem. Phys. 2000, 254, 135-149. (g) Trifonov, R. E.; Zubarev, V. Y.;
Malin, A. A.; Ostrovskii, V. A. Chem. Heterocycl. Compd. (N.Y.) 1998,
34, 111-114.
(4) (a) Haddadin, M. J.; Agha, B. J.; Salka, M. S. Tetrahedron Lett. 1984,
25, 2577. (b) Haddadin, M. J.; Firsan, S.; Nader, B. J. Org. Chem. 1979,
44, 629-630.
(5) (a) Albert, J. S.; Ohnmacht, C.; Bernstein, P. R.; Rumsey, W. L.;
Ahorney, D.; Masek, B. B.; Dembofsky, B. T.; Koether, G. M.; Potts, W.;
Evenden, J. L. Tetrahedron 2004, 60, 4337-4347. (b) Reddy, S. R.;
Saravanan, K.; Pradeep, K. Tetrahedron 1998, 54, 6553-6564.
(6) (a) Datta, S.; Rathore, R. N. S.; Vijayalakshmi, S.; Vasudev, P. G.;
Rao, R. B.; Balaram, P.; Shamala, N. J. Pept. Sci. 2004, 10, 160-172. (b)
Paquette, L. A.; Hartung, R. J. Comput. Chem. 2003, 80, 1201-1208. (c)
Wiberg, K. B. J. Org. Chem. 2003, 68, 9322-9329. (d) Dos Santos, H. F.;
Rocha, W. R.; De Almeida, W. B. Chem. Phys. 2002, 280, 31-42. (e)
Kahn, K.; Bruice, T. C. J. Comput. Chem. 2002, 23, 977-996. (f)
Bharadwaj, R. K. Mol. Phys. 2000, 98, 211-218. (g) Pawar, D. M.; Moody,
E. M.; Noe, E. A. J. Org. Chem. 1999, 64, 4586-4589. (h) Rocha, W. R.;
Pliego, J. R., Jr.; Resende, S. M.; Dos Santos, H. F.; De Oliveira, M. A.;
De Almeida, W. B. J. Comput. Chem. 1998, 19, 524-534.
(7) (a) Cheng, W.-C.; Wong, M.; Olmstead, M. M.; Kurth, M. J. Org.
Lett. 2002, 4, 741. (b) Cheng, W.-C.; Olmstead, M. M.; Kurth, M. J. J.
Org. Chem. 2001, 66, 5528. (c) Cheng, W.-C.; Halm, C.; Evarts, J. B.;
Olmstead, M. M.; and Kurth, M. J. J. Org. Chem. 1999, 64, 8557. (d) Halm,
C.; Kurth, M. J. Tetrahedron Lett. 1997, 38, 7709.
(8) (a) Rojanathanes, R.; Tuntulani, T.; Bhanthumnavin, W.; Sukwatta-
nasinitt, M. Org. Lett. 2005, 7, 3401-3404. (b) Geney, R.; Sun, L.; Pera,
P.; Bernacki, R. J.; Xia, S.; Horwitz, S. B.; Simmerling, C. L.; Ojima, I.
Chem. Biol. 2005, 12, 339-348. (c) Lin, J.-H.; Perryman, A. L.; Schames,
J. R.; McCammon, J. A. J. Am. Chem. Soc. 2002, 124, 5632-5633.
(9) Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 565.
J. Org. Chem, Vol. 71, No. 6, 2006 2481