COMMUNICATIONS
lics 1997, 16, 2492 2494; c) J. S. Rogers, G. C. Bazan, C. K. Sperry, J.
Am. Chem. Soc. 1997, 119, 9305 9306; d) R. A. Lee, R. J. Lachicotte,
G. C. Bazan, J. Am. Chem. Soc. 1998, 120, 6037 6046; e) J. S. Rogers,
R. J. Lachicotte, G. C. Bazan, J. Am. Chem. Soc. 1999, 121, 1288
1298; f) G. C. Bazan, W. D. Cotter, Z. J. A. Komon, R. A. Lee, R. J.
Lachicotte, J. Am. Chem. Soc. 2000, 122, 1371 1380.
Total Synthesis of Ambruticin**
Eun Lee,* Seung Jib Choi, Hahn Kim, Hee Oon Han,
Young Keun Kim, Sun Joon Min, Sung Hee Son,
Sang Min Lim, and Won Suk Jang
[6] For studies of cyclotrimerization reactions catalyzed by cobalt bor-
atabenzene complexes, see: a) H. Bˆnnemann, W. Brijoux, R.
Brinkmann, W. Meurers, Helv. Chim. Acta 1984, 67, 1616 1624;
b) H. Bˆnnemann, Angew. Chem. 1985, 97, 264 279; Angew. Chem.
Int. Ed. Engl. 1985, 24, 248 262.
[7] For pioneering studies of boratabenzene chemistry, see: a) G. E.
Herberich, G. Greiss, H. F. Heil, Angew. Chem. 1970, 82, 838 839;
Angew. Chem. Int. Ed. Engl. 1970, 9, 805 806; b) A. J. Ashe III, P.
Shu, J. Am. Chem. Soc. 1971, 93, 1084 1085.
Ambruticin (1) was isolated from fermentation extracts of
the Myxobacteria species Polyangium cellulosum var. fulvum.
It is an orally active antifungal agent showing in vitro and in
vivo activity against a variety of pathogenic fungi, including
Histoplasma capsulatum, Coccidioides immitis, and Blasto-
myces dermatitides, as well as the dermatophytic filamentous
fungi.[1] Ambruticin features unique cis-2,6-disubstituted
tetrahydropyran and dihydropyran ring systems together with
a methylcyclopropane moiety. In spite of considerable interest
[8] For reviews on boratabenzene chemistry, see: a) G. E. Herberich, H.
Ohst, Adv. Organomet. Chem. 1986, 25, 199 236. b) G. C. Fu, Adv.
Organomet. Chem. 2001, 47, 101 119.
[9] For a versatile synthesis of B-substituted boratabenzenes, see: S. Qiao,
D. A. Hoic, G. C. Fu, J. Am. Chem. Soc. 1996, 118, 6329 6330.
[10] For an application of 1,2-azaborolyl complexes in olefin polymer-
ization, see: S. Nagy, R. Krishnamurti, B. P. Etherton, PCT Int. Appl.
WO 9634021, 1996; [Chem. Abstr. 1997, 126, 19432j].
[11] For overviews of 1,2-azaborolyl chemistry, see: a) G. Schmid in
Comprehensive Heterocyclic Chemistry II, Vol. 3 (Ed.: I. Shinkai),
Elsevier, Oxford, 1996, chap. 3.17; b) G. Schmid, Comments Inorg.
Chem. 1985, 4, 17 32.
O
O
HO2C
OH
OH
1 (+)-Ambruticin
[12] For a recent contribution to 1,2-azaborolyl chemistry, see: A. J.
Ashe III; X. Fang, Org. Lett. 2000, 2, 2089 2091.
[13] Stannacycle 1 can be synthesized in two steps from commercially
available materials: D. H‰nssgen, E. Odenhausen, Chem. Ber. 1979,
112, 2389 2393.
[14] For precedent with B-alkyl- or B-arylboracycles, see: a) J. Schulze, R.
Boese, G. Schmid, Chem. Ber. 1980, 113, 2348 2357; b) J. Schulze, G.
Schmid, J. Organomet. Chem. 1980, 193, 83 91.
[15] For a review, see: A. G. Lee, Organomet. React. 1975, 5, 1 99.
[16] For certain nucleophiles (e.g., LiNMe2 and LiAlH4), not only the B
OTf complex (5; vide infra), but also the B Cl complex (4), serves as
a suitable substrate for displacement reactions at boron.
[17] As Nˆth has noted, boron-containing heteroaromatic compounds that
bear a hydrogen substituent on boron are relatively uncommon: H.
Nˆth, M. Schmidt, Angew. Chem. 1996, 108, 311 312; Angew. Chem.
Int. Ed. Engl. 1996, 35, 292 293.
[18] a) For leading references to electrochemical studies of ferrocene
complexes, see: P. Zanello in Ferrocenes (Eds.: A. Togni, T. Hayashi),
VCH, New York, 1995, chap. 7. b) All of the azaborolyl complexes
depicted in Table 2, except for the F- and PPh2-substituted com-
pounds, display reversible redox behavior.
[19] a) C. Hansch, A. Leo, Substituent Constants for Corrleation Analysis
in Chemistry and Biology, Wiley, New York, 1979; b) C. G. Swain,
E. C. Lupton, Jr., J. Am. Chem. Soc. 1968, 90, 4328 4337; C. G.
Swain, S. H. Unger, N. R. Rosenquist, M. S. Swain, J. Am. Chem. Soc.
1983, 105, 492 502.
in the preparation of 1,[2] we found in the literature only one
total synthesis, reported by Kende in 1990,[3] and the difficulty
in designing a stereoselective total synthesis is manifested in
recent reports dealing with partial syntheses of the molecule.[4]
In our continuing search for new applications of stereo-
selective radical cyclization reactions of b-alkoxyacrylates,[5]
we examined the efficacy of these reactions in a stereo-
controlled synthesis of 1.
In our retrosynthetic analysis, the tetrahydropyran alde-
hyde B was to be prepared from a b-alkoxyacrylate precursor
C, which may be obtained from l-arabinose (2). The
dihydropyran derivative E was envisaged to arise from the
diene F by olefin metathesis.[6] Connection of the parts A and
D by Julia-type olefination would then complete the con-
struction of the carbon framework (Scheme 1).
Selective acetonide protection of the dithioacetal derivative
of l-arabinose (2) and benzylation of the remaining hydroxy
groups gave the acetonide 4 (Scheme 2).[2a] The b-alkoxy-
acrylate 5 was obtained from 4 by acetonide deprotection,
regioselective TBS protection of the primary hydroxy group,
and reaction with methyl propiolate. The aldehyde group
generated from the dithioacetal moiety in 5 was reduced with
NaBH4, and bromide substitution led to the primary bromide
6, which was then stereoselectively transformed into the
[20] G. C. Bazan, W. D. Cotter, Z. J. A. Komon, R. A. Lee, R. J. Lachi-
cotte, J. Am. Chem. Soc. 2000, 122, 1371 1380.
À
[21] The short B O bond length (1.384 ä) is consistent with a significant p
interaction (sum of covalent radii: 1.47ä).
[22] In the case of h6-benzene versus h6-borazine complexes, substitution of
À
À
B N for C C does not appear to significantly change the electronic
character of the metal. For example, see: a) H. Werner, R. Prinz, E.
Deckelmann, Chem. Ber. 1969, 102, 95 103; b) G. Huttner, B. Krieg,
Angew. Chem. 1971, 83, 541 542; Angew. Chem. Int. Ed. Engl. 1971,
10, 512 513.
[*] Prof. Dr. E. Lee, S. J. Choi, H. Kim, H. O. Han, Y. K. Kim, S. J. Min,
S. H. Son, S. M. Lim, W. S. Jang
School of Chemistry and Molecular Engineering
Seoul National University
Seoul 151-747 (Korea)
Fax : (82)2-889-1568
[**] The authors thank the Ministry of Science and Technology, Republic
of Korea, and Korea Institute of Science and Technology Evaluation
and Planning for a National Research Laboratory grant (1999). The
authors also thank Professor A. S. Kende (University of Rochester)
for NMR spectra of natural and synthetic ambruticin, and Professor G.
Hˆfle (GBF) for a sample of natural ambruticin and NMR spectra.
176
¹ WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002
1433-7851/02/4101-0176 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2002, 41, No. 1