9232
Y. Kobayashi, Y. Kiyotsuka / Tetrahedron Letters 42 (2001) 9229–9232
O
rahedron 2000, 56, 1127–1134; (l) Wipf, P.; Wang, X.
Tetrahedron Lett. 2000, 41, 8747–8751.
OH
CO2Me
10% HCl
77%
1) KIO4
7a
4. Kusakabe, M.; Kitano, Y.; Kobayashi, Y.; Sato, F. J.
Pr-i
Pr-i
2) CH2N2
55%
Org. Chem. 1989, 54, 2085–2091.
O
O
5. (a) Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada,
Y.; Ikeda, M.; Sharpless, K. B. J. Am. Chem. Soc. 1981,
103, 6237–6240; (b) Gao, Y.; Hanson, R. M.; Klunder, J.
M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am.
Chem. Soc. 1987, 109, 5765–5780.
6. The related stereochemistry of 7a was unambiguously
determined by NOE experiment of 24, which was synthe-
sized by the method shown in Scheme 3.
OH
19
OH
20
AcOH
95%
H5IO6
52%
X
CHO
OH
CO2Me
H5IO6
Pr-i
Pr-i
O
O
CO2H
21
OMOM
24
73% from 22
OMOM
H
H
22: X = O
23: X = H, OH
11%
NaBH4
CHO
0%
H
H
Scheme 3.
Pr-i
O
OMOM
In summary, one of the alkoxy carbonyl groups in 1a
was recognized selectively by BF3·OEt2 in the Diels–
Alder reaction with several dienes 6, 11–14 affording
7a, 15–18 efficiently.12 In addition, the synthetic advan-
tage of this method was demonstrated by the further
transformation of the representative adduct 7a.
7. A similar observation regarding the stoichiometry is
reported in the Diels–Alder reaction of acrylic esters of
carbohydride-derived
alcohols:
Nagatsuka,
T.;
Yamaguchi, S.; Totani, K.; Takao, K.; Tadano, K. Syn-
lett 2001, 481–484.
8. To a solution of 1a (198 mg, 0.573 mmol) in CH2Cl2 (0.5
mL) was added BF3·OEt2 (0.147 mL, 1.16 mmol) at
−78°C. The resulting light yellow solution was stirred at
−78°C for 30 min, and 6 (0.180 mL, 1.81 mmol) was
added. After 1 h of stirring at −78°C, the mixture was
quenched with saturated NaHCO3, and chromatography
on silica gel (hexane/EtOAc) afforded 7a (211 mg, 90%):
1H NMR (300 MHz, CDCl3) l 0.08 and 0.09 (2s, 6H),
0.85 (d, J=7 Hz, 3H), 0.93 (s, 9H), 1.02 (d, J=7 Hz,
3H), 1.39 (dd, J=8.5, 2 Hz, 1H), 1.71 (d, J=8.5 Hz, 1H),
2.05–2.19 (m, 1H), 3.07–3.12 (m, 2H), 3.33–3.37 (m, 4H),
3.68 (t, J=4 Hz, 1H), 4.14 (d, J=5 Hz, 1H), 4.22 (d,
J=17 Hz, 1H), 4.27 (d, J=17 Hz, 1H), 4.56 (d, J=7 Hz,
1H), 4.63 (d, J=7 Hz, 1H), 5.94 (dd, J=6, 3 Hz, 1H),
6.30 (dd, J=6, 3 Hz, 1H).
References
1. For reviews of reactions promoted by Lewis acid chela-
tion: (a) Shambayati, S.; Schreiber, S. L. In Comprehen-
sive Organic Synthesis; Trost, B. M.; Fleming, I.;
Schreiber, S. L., Eds.; Pergamon: New York, 1991; Vol.
1, pp. 283–324; (b) Yamaguchi, M. In Comprehensive
Organic Synthesis; Trost, B. M.; Fleming, I.; Schreiber, S.
L., Eds.; Pergamon: New York, 1991; Vol. 1, pp. 325–
353; (c) Mikami, K. In Advances in Asymmetric Synthesis;
Hassner, A., Ed.; JAI Press: London, 1995; Vol. 1, pp.
1–44.
2. Conceptionally similar results to the present investigation
have been published: (a) Mikami, K.; Terada, M.; Nakai,
T. J. Org. Chem. 1991, 56, 5456–5459; (b) Urabe, H.;
Evin, O. O.; Sato, F. J. Org. Chem. 1995, 60, 2660–2661.
3. Related works: (a) Furuta, K.; Iwanaga, K.; Yamamoto,
H. Tetrahedron Lett. 1986, 27, 4507–4510; (b) Furuta, K.;
Hayashi, S.; Miwa, Y.; Yamamoto, H. Tetrahedron Lett.
1987, 28, 5841–5844; (c) Waldmann, H.; Dra¨ger, M.
Tetrahedron Lett. 1989, 30, 4227–4230; (d) Tomioka, K.;
Hamada, N.; Suenaga, T.; Koga, K. J. Chem. Soc.,
Perkin Trans. 1 1990, 426–428; (e) Hawkins, J. M.;
Loren, S. J. Am. Chem. Soc. 1991, 113, 7794–7795; (f)
Hartmann, H.; Hady, A. F. A.; Sartor, K.; Weetman, J.;
Helmchen, G. Angew. Chem., Int. Ed. Engl. 1987, 26,
1143–1145; (g) Devine, P. N.; Oh, T. J. Org. Chem. 1992,
57, 396–399; (h) Maruoka, K.; Saito, S.; Yamamoto, H.
J. Am. Chem. Soc. 1992, 114, 1089–1090; (i) Ishihara, K.;
Kurihara, H.; Yamamoto, H. J. Am. Chem. Soc. 1996,
118, 3049–3050; (j) Ghosh, A. K.; Matsuda, H. Org. Lett.
1999, 1, 2157–2159. (k) Clapham, G.; Shipman, M. Tet-
9. Ungerank, M.; Winkler, B.; Eder, E.; Stelzer, F. Macro-
mol. Chem. Phys. 1997, 198, 1391–1410.
10. (a) Kozikowski, A. P.; Floyd, W. C.; Kuniak, M. P. J.
Chem. Soc., Chem. Commun. 1977, 582–583; (b)
Takayama, H.; Iyobe, A.; Koizumi, T. J. Chem. Soc.,
Chem. Commun. 1986, 771–772; (c) Feringa, B. L.;
Gelling, O. J.; Meesters, L. Tetrahedron Lett. 1990, 31,
7201–7204.
1
11. Ratio of 23 and the corresponding triol was 10:1 by H
NMR spectroscopy.
12. On the basis of the following references, we are speculat-
ing complexes such as [1a·BF2]+(BF4)− and [1a·BF2]+F−:
BF2 forms chelation at the a-MOM-oxy carbonyl site to
produce one reactive conformer in which the i-Pr group
efficiently blocks one of the olefin faces. See: (a) Evans,
D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc.
1988, 110, 1238–1256; (b) Chen, X.; Hortelano, E. R.;
Eliel, E. L.; Frye, S. V. J. Am. Chem. Soc. 1992, 114,
1778–1784.