Morphinandienone Alkaloids
4977 – 4982
The organic extract was concentrated and the residue was purified by
column chromatography on silica gel (hexane/EtOAc/Et3N 20:10:1) to
afford glaucine (3a, 20.6 mg, 58%).
Acknowledgments
This work was supported by a Grant-in-Aid for Scientific Research (S)
(No.7690) from the Ministry of Education, Science, Sports and Culture,
Japan.
Glaucine (3a):[9a,19b,23] Colorless solid; m.p. 134–1378C (lit. [23] 111–
1138C; lit. [19b] 136–1388C; lit. [9a] 137–1398C); 1H NMR: d=2.50–2.55
(m, 1H; CH2), 2.57 (s, 3H; NMe), 2.58–2.70 (m, 1H; CH2), 3.00–3.43 (m,
5H; CH, CH2, CH2), 3.65(s, 3H; OMe), 3.89 (s, 3H; OMe), 3.90 (s, 3H;
OMe), 3.93 (s, 3H; OMe), 6.59 (s, 1H; ArH), 6.78 (s, 1H; ArH), 8.09 (s,
1H; ArH); 13C NMR: d=29.0, 29.3, 34.5, 44.1, 53.3, 55.7, 55.8, 60.1, 62.5,
110.3, 110.7, 111.5, 124.7, 126.9, 127.2, 128.9, 129.3, 144.3, 147.4, 147.9,
[1] a) K. L. Stuart, Chem. Rev. 1971, 71, 47–72; b) T. Kametani, K. Fu-
kumoto, J. Heterocycl. Chem. 1971, 8, 341–356; c) T. Kametani, K.
Fukumoto, Synthesis 1972, 657–674; d) T. Kametani, K. Fukumoto,
F. Satoh, Bioorg. Chem. 1974, 3, 430–497; e) G. Blaskꢂ, G. A. Cor-
dell, Heterocycles 1988, 27, 1269–1300.
[2] O. P. Dhingra, in Oxidation in Organic Chemistry; (Ed.: W. S. Traha-
novsky), Academic Press, New York, 1982, Part D, pp. 207–278.
[3] a) B. Franck, G. Dunkelman, H. J. Lubs, Angew. Chem. 1967, 79,
1066–1067; Angew. Chem. Int. Ed. Engl. 1967, 6, 1075–1076; b) T.
Kametani, K. Fukumoto, A. Kozuka, H. Yagi, M. Koizumi, J. Chem.
Soc. C 1969, 2034–2036; c) G. Blaskꢂ, G. Dꢃrnyei, M. Bꢄrczai-Bake,
P. Pꢅchy, C. Szꢄntay, J. Org. Chem. 1984, 49, 1439–1441; d) O. Hosh-
ino, H. Ogasawara, M. Suzuki, M. Arasawa, B. Umezawa, Heterocy-
cles 1990, 30, 385–388; e) O. Hoshino, M. Suzuki, H. Ogasawara,
Heterocycles 2000, 52, 751–760.
[4] a) T. Kametani, K. Fukumoto, F. Satoh, H. Yagi, J. Chem. Soc. C
1969, 520–523; b) T. Kametani, T. Sugahara, H. Yagi, K. Fukumoto,
J. Chem. Soc. C 1969, 1063–1065; c) T. Kametani, M. Koizumi, K.
Fukumoto, Chem. Pharm. Bull. 1969, 17, 2245–2249; d) T. Kameta-
ni, T. Sugahara, H. Yagi, K. Fukumoto, J. Chem. Soc. C 1970, 624–
627.
[5] a) T. Kametani, K. Fukumoto, Acc. Chem. Res. 1972, 5, 212–219;
b) T. Kametani, R. Charubala, M. Ihara, M. Koizumi, K. Takahashi,
K. Fukumoto, J. Chem. Soc. C 1971, 3315–3318; c) S. Gupta, D. S.
Bhakuni, Synth. Commun. 1988, 18, 2251–2258.
[6] a) T. Kametani, S. Shibuya, K. Kigasawa, M. Hiiragi, O. Kusama, J.
Chem. Soc. C 1971, 2712–2714; b) T. Kametani, A. Ujiie, K. Taka-
hashi, T. Nakano, T. Suzuki, K. Fukumoto, Chem. Pharm. Bull.
1973, 21, 766–769; b) S. V. Kessar, R. Randhawa, S. S. Gandhi, Tet-
rahedron Lett. 1973, 14, 2923–2926.
[7] a) L. L. Miller, F. R. Stermitz, J. R. Falck, J. Am. Chem. Soc. 1971,
93, 5941–5342; b) L. L. Miller, F. R. Stermitz, J. R. Falck, J. Am.
Chem. Soc. 1973, 95, 2651–2656; c) E. Kotani, S. Tobinaga, Tetrahe-
dron Lett. 1974, 15, 931–934; d) H. Klꢆnenberg, C. Schꢇffer, H.-J.
Schꢇfer, Tetrahedron Lett. 1982, 23, 4581–4584; e) T. W. Bentley,
S. J. Morris, J. Org. Chem. 1986, 51, 5005–5007.
151.8; IR (KBr): n˜ = 1597 cmÀ1
.
Procedure for the oxidative coupling reaction of N-trifluoroacetyl norlau-
danosine by treatment with PIFA/HPA: HPA (100 mg) and PIFA
(43.0 mg, 0.10 mmol) were added at À208C to a stirred solution of 1g
(0.10 mmol) in 2.5% H2O/CH3CN (4.0 mL). Stirring was continued for
60 min at À20 to 08C. The solution was dilute with AcOEt and filtered
through a pad of alumina. The filtrate was concentrated and the residue
was purified by column chromatography on silica gel (hexane/EtOAc/
Et3N 10:15:0.5) to afford N-trifluoroacetylnorsebiferine (2g) and N-tri-
fluoroacetylneospirinedioenone (4).
Procedure for the oxidative coupling reaction of N-trifluoroacetylnorlau-
danosine by treatment with PIFA/BF3·Et2O: PIFA (43.0 mg, 0.10 mmol)
and BF3·Et2O (25 mL, 0.20 mmol) were added at À208C to a stirred solu-
tion of 1g (0.10 mmol) in CH3CN (4.0 mL). Stirring was continued for
30 min at À20 to 08C. The solution was diluted with EtOAc and then
quenched with saturated aqueous NaHCO3. The mixture was extracted
with EtOAc and washed with brine. The organic extract was concentrat-
ed and the residue was purified by column chromatography on silica gel
(hexane/EtOAc/Et3N 10:15:0.5) to afford the N-trifluoroacetyl neospiri-
nedioenone (4).
Procedure for the oxidative coupling reaction of N-trifluoroacetyl norlau-
danosine by treatment with PIFA/HPA/(CF3CO)2O: HPA (100 mg) and
PIFA (43.0 mg, 0.10 mmol) was added at À208C to a stirred solution of
1g (43.9 mg, 0.10 mmol) in 1.0% (CF3CO)2O/CH3CN (4.0 mL). Stirring
was continued for 30 min at À20 to 08C. The solution was diluted with
EtOAc and then quenched with saturated aqueous NaHCO3. The mix-
ture was extracted with EtOAc and washed with brine. The organic ex-
tract was concentrated and the residue was purified by column chroma-
tography on silica gel (hexane/EtOAc/Et3N 10:15:0.5) to afford the N-tri-
fluoroacetylneospirinedioenone (4).
N-trifluoroacetylnorsebiferine (2g):[7d,21,24] Colorless solid; m.p.
182–1838C (lit. [21] 203–2048C; lit. [24] 179.4–181.58C); 1H NMR: d=
1.79–2.09 (m, 2H; CH2), 2.89–3.29 (m, 3H; CH, CH2), 3.44, 4.45(2ꢁdd,
J=, 18.3, 5.7, 14.1, 5.4 Hz, total 1H; CH2), 3.81 (s, 3H; OMe), 3.86 (s,
3H; OMe), 3.90 (s, 3H; OMe), 4.99, 5.60 (each d, J=5.4, 5.7 Hz, total
1H; CH), 6.36, 6.37 (each s, total 1H; ArH), 6.41 (s, 1H; ArH), 6.62 (s,
1H; ArH), 6.84 (s, 1H; ArH); 13C NMR: d (major)=37.9, 39.5, 41.6,
42.2, 52.0, 55.2, 55.9, 56.4, 108.7, 110.8, 117.4, 123.2, 126.7, 128.6, 148.7,
149.0, 151.9, 156.6, 180.1; d(minor)=37.0, 38.7, 41.0, 42.1, 52.0, 55.3, 55.9,
56.3, 108.7, 110.5, 117.6, 122.7, 126.4, 128.6, 148.7, 149.0, 151.8, 156.3,
[8] S. Tobinaga, Bioorg. Chem. 1975, 4, 110–125.
[9] a) S. M. Kupchan, A. J. Liepa, V. Kameswaran, R. F. Bryan, J. Am.
Chem. Soc. 1973, 95, 6861–6863; b) S. M. Kupchan, V. Kameswaran,
J. T. Lynn, D. K. Williams, A. J. Liepa, J. Am. Chem. Soc. 1975, 97,
5622–5623.
[10] a) S. M. Kupchan, O. P. Dhingra, C.-K. Kim, V. Kameswaran, J. Org.
Chem. 1978, 43, 2521–2529; b) E. C. Taylor, J. G. Andrade, G. J. H.
Rall, A. McKillop, J. Am. Chem. Soc. 1980, 102, 6513–6519; c) Y.
Landais, D. Rambault, J. P. Robin, Tetrahedron Lett. 1987, 28. 543–
546; d) L. Gottlieb, A. I. Meyers, J. Org. Chem. 1990, 55, 5 65 9–
5662; e) Y. Landais, J.-P. Robin, Tetrahedron 1992, 48, 7185–7196;
f) D. Planchenault, R. Dhal, J.-P. Robin, Tetrahedron 1993, 49, 5823–
5830.
[11] For reviews, see: a) P. J. Stang, V. V. Zhdankin, Chem. Rev. 1996, 96,
1123–1178; b) A. Varvoglis, Hypervalent Iodine in Organic Synthe-
sis, Academic Press, San Diego, 1997; c) T. Kitamura, Y. Fujikawa,
Org. Prep. Proced. Int. 1997, 29, 409–458; d) T. Wirth, U. H. Hirt,
Synthesis 1999, 1271–1287; e) V. V. Zhdankin, P. J. Stang, Chem.
Rev. 2002, 102, 2523–2584; f) T. Wirth, Hypervalent Iodine in
Chemistry, Springer, Berlin, 2003.
[12] a) Y. Kita, H. Tohma, K. Hatanaka, T. Takada, S. Fujita, S. Mitoh,
H. Sakurai, S. Oka, J. Am. Chem. Soc. 1994, 116, 3684–3691; b) Y.
Kita, T. Takada, S. Mihara, H. Tohma, Synlett 1995, 211–212; c) Y.
Kita, M. Gyoten, M. Ohtsubo, H. Tohma, T. Takada, Chem.
Commun. 1996, 1481–1482; d) Y. Kita, M. Egi, A. Okajima, M.
Ohtsubo, T. Takada, H. Tohma, Chem. Commun. 1996, 1491–1492;
e) Y. Kita, M. Egi, M. Ohtsubo, T. Saiki, T. Takada, H. Tohma,
Chem. Commun. 1996, 2225–2226; f) T. Takada, M. Arisawa, M.
180.1; IR (KBr): n˜
= ; HRMS-EI: m/z: calcd for
1649, 1678 cmÀ1
C21H20F3NO5: 423.1293; found: 423.1292; MS: m/z (%): 423.2 (100)
[M +].
N-trifluoroacetylneospirinedioenone (4):[7d,25] Colorless solid; m.p.
250–2518C (lit. [25] 247–2488C); 1H NMR: d=1.94–2.34 (m, 4H; CH2,
CH2), 2.87, 3.10 (each dd, J=18.3, 6.3, 17.4, 3.0 Hz, total 1H; CH2), 3.21,
3.47 (each dd, J=17.4, 7.2, 18.3, 9.3 Hz, total 1H; CH2), 3.68, 3.73 (each
s, total 3H; OMe), 3.91 (s, 6H; OMe, OMe), 4.49, 4.64 (each dd, J=9.3,
6.3, 7.2, 3.0 Hz, total 1H; CH), 5.69, 5.83 (each s, total 1H; ArH), 6.60 (s,
1H; ArH), 6.65, 6.76 (each s, total 1H; ArH), 6.98, 7.07 (each s, total
1H; ArH); 13C NMR: d(major) =31.7, 41.2, 45.1, 47.4, 55.2, 56.1 (2C),
60.6, 108.0, 111.1, 116.4, 116.2 (J=287 Hz), 123.7, 125.2, 127.4, 148.7,
151.3, 151.8, 155.9 (J=37 Hz), 156.8, 180.8; d (minor) =33.3, 36.2, 45.0,
48.1, 55.2, 56.0 (2C), 60.7, 107.4, 110.5, 114.4, 116.1 (J=287 Hz), 122.6,
123.9, 127.0, 148.7, 151.8, 152.1, 154.4, 155.7(J=37 Hz), 180.7; IR (KBr):
n˜ = 1639, 1693 cmÀ1; HRMS-EI: m/z: calcd for C21H20F3NO5: 423.1293;
found: 423.1294; MS: m/z (%): 423.2 (100) [M +]; elemental analysis
calcd (%) for C21H20F3NO5: C 59.57, H 4.76, N 3.31; found: C 59.34, H
4.79, N 3.32.
Chem. Eur. J. 2004, 10, 4977 – 4982
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4981