Published on Web 02/16/2002
Total Synthesis of the CP-Molecules (CP-263,114 and
CP-225,917, Phomoidrides B and A). 1. Racemic and
Asymmetric Synthesis of Bicyclo[4.3.1] Key Building Blocks
K. C. Nicolaou,* J. Jung, W. H. Yoon, K. C. Fong, H.-S. Choi, Y. He,
Y.-L. Zhong, and P. S. Baran
Contribution from the Department of Chemistry and The Skaggs Institute for Chemical Biology,
The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and
Department of Chemistry and Biochemistry, UniVersity of California, San Diego,
9500 Gilman DriVe, La Jolla, California 92093
Received August 20, 2001
Abstract: A brief introduction into the chemistry of the CP-molecules is followed by first-generation synthetic
sequences toward key building blocks for their total synthesis. Processes for both racemic and
enantiomerically enriched bicyclo[4.3.1] ketone 6 or its equivalent are described, and the absolute
stereochemistries of the optically enriched intermediates are determined. The efficient route developed to
racemic 6 and the ready access to both enantiomers of key building blocks provided the opportunity for
the total synthesis of the CP-molecules and determination of their absolute stereochemistry.
Introduction
Since their discovery in the mid-1990s by a group at Pfizer,1
the CP-molecules [1, CP-263,114 (phomoidride B), and 2, CP-
225,917 (phomoidride A), Figure 1] have stimulated manifold
* To whom correspondence should be addressed at the Department of
Chemistry, The Scripps Research Institute.
(1) (a) Dabrah, T. T.; Kaneko, T.; Massefski, Jr., W.; Whipple, E. B. J. Am.
Chem. Soc. 1997, 119, 1594. (b) Dabrah, T. T.; Harwood, H. J., Jr.; Huang,
L. H.; Jankovich, N. D.; Kaneko, T.; Li, J.-C.; Lindsey, S.; Moshier, P.
M.; Subashi, T. A.; Therrien, M.; Watts, P. C. J. Antibiot. 1997, 50, 1. (c)
For an earlier disclosure of the structures of the CP-molecules, see: Stinson,
S. Chem. Eng. News 1995, May 22, 29.
(2) (a) Nicolaou, K. C.; Ha¨rter, M. W.; Boulton, L.; Jandeleit, B. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 1194. (b) Nicolaou, K. C.; Postema, M. H. D.;
Miller, N. D.; Yang, G. Angew. Chem., Int. Ed. Engl. 1997, 36, 2821. (c)
Davies, H. M. L.; Calvo, R.; Ahmed, G. Tetrahedron Lett. 1997, 38, 1737.
(d) Sgarbi, P. W. M.; Clive, D. L. J. Chem. Commun. 1997, 2157. (e)
Armstrong, A.; Critchley, T. J.; Mortlook, A. A. Synlett 1998, 552. (f)
Kwon, O.; Su, D.-S.; Meng, D.; Deng, W.; D’Amico, D. C.; Danishefsky,
S. J. Angew. Chem., Int. Ed. 1998, 37, 1877. (g) Kwon, O.; Su, D.-S.;
Meng, D.; Deng, W.; D’Amico, D. C.; Danishefsky, S. J. Angew. Chem.,
Int. Ed. 1998, 37, 1880. (h) Waizumi, N.; Itoh, T.; Fukuyama, T.
Tetrahedron Lett. 1998, 39, 6015. (i) Chen, C.; Layton, M. E.; Shair, M.
D. J. Am. Chem. Soc. 1998, 120, 10784. (j) Fontier, A. J.; Danishefsky, S.
J.; Koppel, G. A.; Meng, D. Tetrahedron 1998, 54, 12721. (k) Bio, M. M.;
Leighton, J. L. J. Am. Chem. Soc. 1999, 121, 890. (l) Nicolaou, K. C.;
Baran, P. S.; Jautelat, R.; He, Y.; Fong, K. C.; Choi, H.-S.; Yoon, W. H.;
Zhong, Y.-L. Angew. Chem., Int. Ed. 1999, 38, 549. (m) Clive, D. L. J.;
Sun, S.; He, X.; Zhang, J.; Gagliardini, V. Tetrahedron Lett. 1999, 40,
4605. (n) Meng, D.; Danishefsky, S. J. Angew. Chem., Int. Ed. 1999, 38,
1485. (o) Yoshimitsu, T.; Yanagiya, M.; Nagaoka, H. Tetrahedron Lett.
1999, 40, 5215. (p) Meng, D.; Tan, Q.; Danishefsky, S. J. Angew. Chem.,
Int. Ed. 1999, 38, 3197. (q) Sulikowski, G. A.; Agnelli, F.; Corbett, R. M.
J. Org. Chem. 2000, 65, 337. (r) Devaux, J.-F.; O’Neil, S. V.; Guillo, N.;
Paquette, L. A. Collect. Czech. Chem. Commun. 2000, 65, 490. (s) Davies,
H. M. L.; Calvo, R. L.; Townsend, R. J.; Pingda, R.; Churchill, R. M. J.
Org. Chem. 2000, 65, 4261. (t) Bio, M. M.; Leighton, J. L. Org. Lett. 2000,
2, 2905. (u) Clive, D. L. J.; Sun, S.; Gagliardini, V.; Sano, M. K.
Tetrahedron Lett. 2000, 41, 6259. (v) Yoshimitsu, T.; Yanagisawa, S.;
Nagaoka, H. Org. Lett. 2000, 2, 3751. (w) Davies, H. M. L.; Ren, P.
Tetrahedron Lett. 2000, 41, 9021. (x) For biosynthetic explorations, see:
Spencer, P.; Agnelli, F.; Williams, H. J.; Keller, N. P.; Sulikowski, G. A.
J. Am. Chem. Soc. 2000, 122, 420. (y) Njardarson, J. T.; Wood, J. L. Org.
Lett., in press. (z) Njardarson, J. T.; McDonlad, I. M.; Spiegel, D. A.; Inove,
M.; Wood, J. L. Org. Lett. 2001, 3, 2435.
Figure 1. Structures and absolute configurations of the CP-molecules. For
the purposes of this series of papers, structures 1 and 2 will designate the
racemic compounds, whereas structures 3 and 4 will designate the proven
naturally occurring enantiomeric forms of the CP-molecules.
studies directed toward their total synthesis.2 The intense
interest3 in these natural products is fueled by their interesting
biological activities1 (inhibitors of ras farnesyl transferase and
squalene synthase) and complex and unusual molecular con-
nectivities. Indeed, the exquisite chemical architectures of the
CP-molecules and the sheer challenge associated with their total
synthesis demand and inspire the design, development, and
discovery of new synthetic methods and novel synthetic
strategies.4
In 1999 we reported the first total syntheses of 1 and 2
(racemic),5 and in 2000 we determined their absolute configura-
tions (3 and 4, as shown in Figure 1) by way of asymmetric
(3) For reviews, see: (a) Hepworth, D. Chem. Ind. (London) 2000, 2, 59. (b)
Starr, J. T.; Carreira, E. M. Angew. Chem., Int. Ed. 2000, 39, 1415. (c)
Diederichsen, U. Nachr. Chem. Tech. Lab. 1999, 47, 1423.
(4) Nicolaou, K. C.; Vourloumis, D.; Winssinger, N.; Baran, P. S. Angew.
Chem., Int. Ed. 2000, 39, 44.
9
10.1021/ja012010l CCC: $22.00 © 2002 American Chemical Society
J. AM. CHEM. SOC. VOL. 124, NO. 10, 2002 2183