34
P. Melnyk et al. / Bioorg. Med. Chem. Lett. 16 (2006) 31–35
10. Tsafack, A.; Loyevski, M.; Ponka, P.; Cabantchik, Z. I.
J. Lab. Clin. Med. 1996, 127, 575.
could not be attributed to indirect effects due to modifi-
cations of the host cell membrane.
11. Clarke, C. J.; Eaton, J. W. Clin. Res. 1990, 38, 300A.
12. Ponka, P.; Richardson, D. R.; Edward, J. T.; Chubb, F. L.
Can. J. Physiol. Pharmacol. 1994, 72, 659.
13. Walcourt, A.; Loyevsky, M.; Lovejoy, D. B.; Gordeuk, V.
R.; Richardson, D. R. Int. J. Biochem. Cell B 2004, 36,
401.
14. (a) Caffrey, C. R.; Schanz, M.; Nkemgu-Njinkeng, J.;
Brush, M.; Hansell, E.; Cohen, F. E.; Flaherty, T. M.;
McKerrow, J. H.; Steverding, D. Int. J. Antimicrob.
Agents 2002, 19, 227; (b) Greenbaum, D. C.; Mackey,
Z.; Hansell, E.; Doyle, P.; Gut, J.; Caffrey, C. R.; Lehman,
J.; Rosenthal, P. J.; McKerrow, J. H.; Chibale, K. J. Med.
Chem. 2004, 47, 3212.
The average cytotoxicities of acylhydrazones upon MRC-
5 cells extended from 1 lM to more than 100 lM (Table
2). Three compounds showed a reproducible lack of
toxicity at 100 lM: 2-hydroxy-5-methyl-benzaldehyde
4-chloro-benzoyl hydrazone 5, 2-hydroxy-5-tert-butyl
benzaldehyde 4-methoxy-benzoyl hydrazone 10 and
2-hydroxy-5-bromobenzaldehyde 4-tert-butyl-benzoyl
hydrazone 12. All the other compounds provided a selec-
tivity index (ratio CC50/IC50) between 1 and 16, too low
for a potential development as drug candidates.
15. In deepwell plates, 100 lL of aldehyde (0.1 M in DMF) was
added to 50 lL of hydrazide (0.2 M in DMF). The mixture
was stirred at room temperature overnight. Five microlitres
was removed for QC analysis. Reaction plates and QC
plates were evaporated in a Genevac EZ2 evaporator. QC
aliquots were solubilized with 5 lL DMF and 200 lL
CH3CN before HPLC and MALDI/TOF analysis.
A library of 153 acylhydrazones was synthesized with
high purity. Though the activity is in the micromolar
range against P. falciparum growth, these compounds
have the highest antimalarial activity of this class of iron
chelators. As three of the compounds present no detect-
able toxicity, further studies of their biological activity
are in progress. From a mechanistic point of view, as
ribonucleotide reductase is a target for HNFBH 2,25
an investigation of the potency of this library on this en-
zymeÕs activity is also intended.
Compound tR (min) Purity (%) m/z [M+H]+ found
(calcd)
2
3
5.29
7.18
5.90
7.60
8.56
8.14
8.05
8.74
8.20
8.41
9.05
97
96
312.2 (311.16)
368.2 (367.23)
357.1 (356.15)
289.1 (288.07)
311.2 (310.17)
297.1 (296.15)
303.1 (302.11)
331.1 (330.11)
327.1 (326.16)
342.1 (341.14)
375.1–377.4
4
>99
99
Acknowledgments
5
6
>99
>99
>99
>99
>99
>99
95
´
We express our thanks to Herve Drobecq for MALDI
spectra. These works are supported by Universite de
7
´
8
Lille II and PAL+ French Research Ministry
program.
9
10
11
12
Supplementary data
(374.06–376.06)
QC results, inhibition of haem polymerization, VAR in
silico calculations for the entire library. Supplementary
data associated with this article can be found, in the on-
16. (a) Trager, W.; Jensen, J. B. Science 1976, 193, 673; (b)
Desjardins, R. E.; Canfield, C. J.; Haynes, J. D.; Chulay,
J. D. Antimicrob. Agents Chemother. 1979, 16, 710.
17. Mossman, T. J. Immunol. Methods 1983, 65, 55.
18. Fitch, C. D.; Cai, G.; Chen, Y.-F.; Shoemaker, J. D.
Biochim. Biophys. Acta 1999, 1454, 31.
19. Ayad, F.; Tilley, L.; Deady, L. W. Bioorg. Med. Chem.
Lett. 2001, 11, 2075.
20. Values of LogD and LogP at pH 5.0 and pH 7.4
were calculated using ACD/pKa DB software from
Advanced Chemistry Development Inc., Toronto,
Canada.
21. (a) Shanzer, A.; Libman, J.; Lytton, S. D.; Glickstein, H.;
Cabantchik, Z. I. Proc. Natl. Acad. Sci. U.S.A. 1991, 88,
6585; (b) Pradines, B.; Rolain, J. M.; Ramiandrasoa, F.;
Fusai, T.; Mosnier, J.; Rogier, C; Daries, W.; Baret, E.;
Kunesh, G.; Le Bras, J.; Parzy, D. J. Antimicrob.
Chemother. 2002, 50, 177.
References and notes
1. Geary, T. G.; Jensen, J. B.; Ginsburg, H. Biochem.
Pharmacol. 1986, 35, 3805.
2. Yayon, A.; Cabantchik, Z. I.; Ginsburg, H. EMBO J.
1984, 3, 2695.
3. Bonday, Z. Q.; Taketani, S.; Gupta, P. D.; Padmanaban,
G. J. Biol. Chem. 1997, 272, 839.
4. Wrigglesworth, J. M.; Baum, H. In The Biochemical
Function of Iron; Jacobs, A., Worwood, M., Eds.;
Academic Press: New York, 1980; p 29.
5. Loyevsky, M.; Gordeuk, V. R. In Antimalarial Chemo-
therapy; Rosenthal, P. J., Ed.; Humane Press Inc.:
Totowa, NJ, 2001, Chapter 17.
6. Bernhardt, P. V.; Caldwell, L. M.; Chaston, T. B.; Chin,
P.; Richardson, D. R. J. Biol. Inorg. Chem. 2003, 8, 866.
7. Richardson, D. R. Exp. Opin. Invest. Drugs 1999, 8, 2141.
8. Gordeuk, V. R.; Thuma, P. E.; Brittenham, G. M.; Zulu,
S.; Simwanza, G.; Mhangu, A.; Flesch, G.; Parry, D.
Blood 1992, 79, 308.
22. Vacuolar accumulation ratios (VARs) were calculated
from the equation below:
P
P
4
n¼1
n
ai
v
1 þ
i¼110pK -pH
VAR ¼
;
P
P
4
n
1 þ
10pKai-pH0
n¼1
i¼1
where pHv = pH inside the vacuole (assumed to be pH 5.0)
pH0 = pH externally (assumed to be pH 7.4). This equation
proceeds from a derivation of the Henderson–Hasselbach
equation, based on predicted values of drug pKa accord-
9. Gordeuk, V. R.; Thuma, P. E.; McLaren, C. E.; Biemba,
G.; Zulu, S.; Poltera, A. A.; Askin, J. E.; Brittenham, G.
M. Blood 1995, 85, 3297.