10.1002/anie.202006687
Angewandte Chemie International Edition
COMMUNICATION
Figure 4. a) Chemical structures of amphiphilic BCPs with different junction linkages: mPEG45-Ester-PSn versus mPEG45-Carbamate-PSm. b) Schematics of vesicle
formation from mPEG45-Carbamate-PSm and nanostructure stabilization facilitated by interchain hydrogen bonding interactions of carbamate linkages at diblock
junctions; note that mPEG45-Ester-PSn with comparable PS lengths only self-assembles into micellar nanoparticles. Typical TEM images recorded for c) mPEG45
-
Carbamate-PS101, d) mPEG45-Carbamate-PS46, e) mPEG45-Ester-PS103, and f) mPEG45-Ester-PS43 nanoassemblies. g) Evolution of GPC traces recorded for
mPEG45-Ester-PS6 and mPEG45-Carbamate-PS6 micelles upon incubation with esterase in PB buffer (pH 7.4, 10 mM). h) Comparison of loading efficiencies and
loading contents of ICG by mPEG45-Carbamate-PS6 and mPEG45-Ester-PS6 micelles. i) Cumulative release profiles of ICG-loaded mPEG45-Ester-PS6 micelles and
mPEG45-Carbamate-PS6 micelles upon incubation with esterase in PB buffer (pH 7.4, 10 mM). j) In vivo NIR fluorescence tumor imaging and k) evolution of average
emission intensities at the tumor region for 4T1 tumor-bearing Balb/c mice at 2, 4, 8, 12, 24, and 48 h after intravenous injection of ICG-loaded mPEG45-Ester-PS6
micelles and mPEG45-Carbamate-PS6 micelles at an equivalent ICG dosage of 80 μg/kg.
Hu, S. Liu, Angew. Chem. Int. Ed. 2016, 55, 1760-1764; Angew. Chem.
2016, 128, 1792-1796; g) Z. Deng, Y. Qian, Y. Yu, G. Liu, J. Hu, G. Zhang,
In summary, we developed a highly efficient strategy to
synthesize PEG derivatives with varying terminal with high-fidelity
terminal functionalities including primary amine, hydrazide, thiol,
aldehyde, ketone, maleimide, and bromide. The functionalization
process is conducted in a one-pot manner by taking advantage of
acyl azide chemistry, which quantitatively transforms in situ into
isocyanate derivatives upon heating. The high-fidelity of PEG
functionalization is verified by the clean set of MALDI-TOF MS
patterns and monomodal/symmetric GPC elution traces. Storage-
stable and air-insensitive PEG-amine was fabricated for the first
time by integrating the “carbamate” strategy with finely tuned
terminal amine basicity/nucleophilicity, together with appropriate
choice of spacer linkers. Besides linear PEG, non-linear ones
(e.g., star-shaped) could also be quantitatively functionalized
without compromising conjugation efficiency. Notably, the
incorporation of carbamate linkage instead of conventional ester
bond at the diblock junction could not only facilitate higher-order
nanostructure formation, but also remarkably improve
nanostructure (encapsulation) stability under in vitro and in vivo
conditions. In principle, the reported “carbamate” strategy could
be further generalized to the functionalization of any small
molecules and polymer precursors bearing hydroxyl and amine
moieties.
S. Liu, J. Am. Chem. Soc. 2016, 138, 10452-10466.
[5]
[6]
a) A. F. Bückmann, M. Morr, G. Johansson, Makromol. Chem. 1981, 182,
1379-1384; b) S. Zalipsky, Bioconjugate Chem. 1995, 6, 150-165; c) M.
Leonard, E. Dellacherie, Makromol. Chem. 1988, 189, 1809-1817; d) J.
M. Harris, J. Macromol. Sci.: Part C 1985, 25, 325-373.
a) T. J. Deming, Chem. Rev. 2016, 116, 786-808; b) N. Hadjichristidis, H.
Iatrou, M. Pitsikalis, G. Sakellariou, Chem. Rev. 2009, 109, 5528-5578;
c) Z. Y. Song, Z. Y. Han, S. X. Lv, C. Y. Chen, L. Chen, L. C. Yin, J. J.
Cheng, Chem. Soc. Rev. 2017, 46, 6570-6599.
[7]
[8]
P.-C. Chen, Y. Liu, J. S. Du, B. Meckes, V. P. Dravid, C. A. Mirkin, J. Am.
Chem. Soc. 2020, 142, 7350-7355.
a) J. Loccufier, J. Crommen, J. Vandorpe, E. Schacht, Makromol. Chem.
Rapid Commun. 1991, 12, 159-165; b) D. L. Elbert, J. A. Hubbell,
Biomacromolecules 2001, 2, 430-441; c) A. Karatzas, J. S. Haataja, D.
Skoulas, P. Bilalis, S. Varlas, P. Apostolidi, S. Sofianopoulou, E. Stratikos,
N. Houbenov, O. Ikkala, H. Iatrou, Biomacromolecules 2019, 20, 4546-
4562; d) N. J. Warren, O. O. Mykhaylyk, D. Mahmood, A. J. Ryan, S. P.
Armes, J. Am. Chem. Soc. 2014, 136, 1023-1033.
[9]
B. Banasik, C. Nadala, M. Samadpour, Org. Prep. Proced. Int. 2018, 50,
95-99.
[10] a) S. Zalipsky, C. Gilon, A. Zilkha, J. Macromol. Sci.: Part A 2006, 21,
839-845; b) Y. Wei, R. Zhuo, X. Jiang, J. Sep. Sci. 2016, 39, 4305-4313.
[11] a) X. Wang, G. Liu, J. Hu, G. Zhang, S. Liu, Angew. Chem. Int. Ed. 2014,
53, 3138-3142; Angew. Chem. 2014, 126, 3202-3206; b) F. Z. Lu, X. Y.
Xiong, Z. C. Li, F. S. Du, B. Y. Zhang, F. M. Li, Bioconjugate Chem. 2002,
13, 1159-1162; c) G. Liu, C. M. Dong, Biomacromolecules 2012, 13,
1573-1583.
[12] a) K. Maranski, Y. G. Andreev, P. G. Bruce, Angew. Chem. Int. Ed. 2014,
53, 6411-6413; Angew. Chem. 2014, 126, 6529-6531; b) N. Boden, R. J.
Bushby, S. Clarkson, S. D. Evans, P. F. Knowles, A. Marsh, Tetrahedron
1997, 53, 10939-10952; c) Y. Z. Wei, R. X. Zhuo, X. L. Jiang, J.
Chromatogr. 2016, 1447, 122-128.
[13] a) C. Y. Cho, E. J. Moran, S. R. Cherry, J. C. Stephans, S. P. A. Fodor,
C. L. Adams, A. Sundaram, J. W. Jacobs, P. G. Schultz, Science 1993,
261, 1303-1305; b) M. Shamis, H. N. Lode, D. Shabat, J. Am. Chem. Soc.
2004, 126, 1726-1731; c) X. Hu, S. Liu, Y. Huang, X. Chen, X. Jing,
Biomacromolecules 2010, 11, 2094-2102; d) D. Aydin, M. Arslan, A.
Sanyal, R. Sanyal, Bioconjugate Chem. 2017, 28, 1443-1451.
[14] “End-group functionalization of hydroxyl-relevant compounds and
polymers and methods thererof”: S. Y. Liu, S. Y. Shi, Patent Application
Filed, CN202010578627.0, 2020.
Acknowledgements
The financial support from National Natural Science Foundation
of China (NNSFC) Project (51690150, 51690154, 21674103, and
U19A2094) and International S&T Cooperation Program of China
(ISTCP) of MOST (2016YFE0129700) is gratefully acknowledged.
[15] a) J. Glastrup, Polym. Degrad. Stab. 1996, 52, 217-222; b) A. Sayari, A.
Heydari-Gorji, Y. Yang, J. Am. Chem. Soc. 2012, 134, 13834-13842.
[16] P. Bollini, S. Choi, J. H. Drese, C. W. Jones, Energy Fuels 2011, 25, 2416-
2425.
Conflict of interest
[17] C. Godoy-Alcántar, A. K. Yatsimirsky, J. M. Lehn, J. Phys. Org. Chem.
2005, 18, 979-985.
[18] M. V. Zabalov, R. P. Tiger, Russ. Chem. Bull. 2007, 56, 7-13.
[19] X. Lou, B. F. de Waal, J. L. van Dongen, J. A. Vekemans, E. W. Meijer, J.
Mass Spectrom. 2010, 45, 1195-1202.
S.Y.L. and S.Y.S are inventors on a patent application filed by
University of Science and Technology of China that covers end-
group functionalization of hydroxyl-relevant compounds.
[20] H. R. Kricheldorf, Angew. Chem. Int. Ed. 2006, 45, 5752-5784; Angew.
Chem. 2006, 118, 5884-5917.
Keywords: functionalized PEG • carbamate linker • amphiphilic
block copolymers • self-assembly • encapsulation stability
[21] a) G. Liu, X. Wang, J. Hu, G. Zhang, S. Liu, J. Am. Chem. Soc. 2014, 136,
7492-7497; b) X. Wang, J. Hu, G. Liu, J. Tian, H. Wang, M. Gong, S. Liu,
J. Am. Chem. Soc. 2015, 137, 15262-15275; c) X. R. Wang, C. Z. Yao,
G. Y. Zhang, S. Y. Liu, Nature Commun. 2020, 11, 13; d) C. Z. Yao, X. R.
Wang, J. M. Hu, S. Y. Liu, Acta Polym. Sin. 2019, 50, 553-566; e) J. M.
Hu, S. Y. Liu, Sci. China Chem. 2018, 61, 1110-1122; f) Z. Y. Deng, S.
Yuan, R. X. Xu, H. J. Liang, S. Y. Liu, Angew. Chem. Int. Ed. 2018, 57,
8896-8900; Angew. Chem. 2018, 130, 9034-9038.
[22] a) F. Liu, Z. Zhao, J. Yang, J. Wei, S. Li, Polym. Degrad. Stab. 2009, 94,
227-233; b) R. J. Amir, S. Zhong, D. J. Pochan, C. J. Hawker, J. Am.
Chem. Soc. 2009, 131, 13949-13951; c) X. Zhu, M. Fryd, B. D. Tran, M.
A. Ilies, B. B. Wayland, Macromolecules 2012, 45, 660-665; d) J.
Rosselgong, E. G. L. Williams, T. P. Le, F. Grusche, T. M. Hinton, M.
Tizard, P. Gunatillake, S. H. Thang, Macromolecules 2013, 46, 9181-
9188; e) N. Qiu, X. Liu, Y. Zhong, Z. Zhou, Y. Piao, L. Miao, Q. Zhang, J.
Tang, L. Huang, Y. Shen, Adv. Mater. 2016, 28, 10613-10622; f) Y. Zheng,
B. Yu, Z. Li, Z. Yuan, C. L. Organ, R. K. Trivedi, S. Wang, D. J. Lefer, B.
Wang, Angew. Chem. Int. Ed. 2017, 56, 11749-11753; Angew. Chem.
2017, 129, 11911-11915; g) A. Tatsumi, S. Inoue, T. Hamaguchi, S.
[1]
[2]
a) S. Zalipsky, Adv. Drug Del. Rev. 1995, 16, 157-182; b) J. M. Harris, S.
Zalipsky, Poly(ethylene glycol): Chemistry and Biological Applications,
ACS, Washington, DC, 1997.
a) A. Abuchowski, J. R. Mccoy, N. C. Palczuk, T. Van Es, F. F. Davis, J.
Biol. Chem. 1977, 252, 3582-3586; b) R. Haag, F. Kratz, Angew. Chem.
Int. Ed. 2006, 45, 1198-1215; Angew. Chem. 2006, 118, 1218-1237; c) R.
B. Greenwald, Y. H. Choe, J. McGuire, C. D. Conover, Adv. Drug Del.
Rev. 2003, 55, 217-250; d) G. Liu, G. Shi, H. Sheng, Y. Jiang, H. Liang,
S. Liu, Angew. Chem. Int. Ed. 2017, 56, 8686-8691; Angew. Chem. 2017,
129, 8812-8817.
[3]
[4]
S. N. S. Alconcel, A. S. Baas, H. D. Maynard, Polym. Chem. 2011, 2,
1442-1448.
a) H. Otsuka, Y. Nagasaki, K. Kataoka, Adv. Drug Del. Rev. 2003, 55,
403-419; b) J. W. Singer, J. Controlled Release 2005, 109, 120-126; c) K.
Osada, K. Kataoka, Adv. Polym. Sci. 2006, 202, 113-153; d) K. Knop, R.
Hoogenboom, D. Fischer, U. S. Schubert, Angew. Chem. Int. Ed. 2010,
49, 6288-6308; Angew. Chem. 2010, 122, 6430-6452; e) Z. S. Ge, S. Y.
Liu, Chem. Soc. Rev. 2013, 42, 7289-7325; f) Y. Li, G. Liu, X. Wang, J.
Iwakawa, Biol. Pharm. Bull. 2018, 41, 277-280; h) C. Yao, Y. Li, Z. Wang,
C. Song, X. Hu, S. Liu, ACS Nano 2020, 14, 1919-1935.
This article is protected by copyright. All rights reserved.