10.1002/chem.202003566
Chemistry - A European Journal
FULL PAPER
Experimental Section
General procedure for the catalytic sulfimidation reactions. A flame-
dried vial (4 mL) was charged with iminoiodinane (48.0 µmol; 1.0 eq.),
CH2Cl2 (1.8 mL; total concentration iminoiodinane of 24.0 mM), sulfide
(72.0 µmol; 1.5 eq.; 100 µL of a 720 mM stock solution in CH2Cl2),
PPh4[CoIII(TAMLred)] (0.40 mg; 0.48 µmol; 1.0 mol%; 100 µL of a 4.8 mM
stock solution in CH2Cl2) and closed with a cap. The reaction mixture was
stirred under aerobic conditions at 25 oC for 30 minutes. 1,3,5-
Trimethoxybenzene (0.67 mg; 4.0 µmol; 100 µL of a 40.0 mM stock
solution in CH2Cl2) was added as an internal standard, the reaction mixture
was filtered (syringe filter, PTFE, 0.45 µm) to remove unreacted
iminoiodinane, concentrated under reduced pressure at 25 oC, dissolved
in deuterated solvent, filtered (syringe filter, PFTE, 0.45 µm) and analyzed
by 1H NMR spectroscopy.
Conclusion
We have shown that PPh4[CoIII(TAMLred)] is an effective catalyst
for the sulfimidation of (alkyl)(aryl)-substituted sulfides under mild
conditions (25 oC, aerobic, 1.0 mol%). TONs up to 900 and TOFs
up to 640 min-1 are reported, demonstrating the stability and
activity of the catalyst under practical conditions. Moreover, this is
the first example of a cobalt-catalyzed sulfimidation reaction via
nitrene transfer to sulfides. In the presence of alkenes and weak
C‒H bonds, nitrene transfer proceeds chemoselectively towards
the sulfide, as supported by inter- and intramolecular competition
reactions, which we attribute to the lower oxidation potential of the
sulfides and the electrophilic behavior of the nitrene radical
intermediates. Electron-donating (Me, OMe) and -withdrawing (F,
Cl) substituents on the aryl moiety in thioanisole derivatives are
tolerated, and methyl substitution in thioanisole for ethyl, iso-
propyl, benzyl, ethylphenyl, and vinyl all afford the respective
sulfimidation products in generally good yields. Sulfimidation of
phenyl allyl sulfide leads to [2,3]-sigmatropic rearrangement to
yield the N-allyl-S-phenyl-thiohydroxylamine products. Late-stage
sulfimidation of ethyl-(4-(phenoxymethyl)-phenyl)-sulfane affords
a small drug molecule in excellent yield. Hammett analysis
indicates that positive charge buildup and significant radical
stabilization on the sulfide substrate occur in the transition state
leading to sulfimide product formation. Combined with the
computational data, we suggest that the N‒S bond formation is
initiated by substrate-to-ligand single-electron transfer (mono-
nitrene pathway) in an electronically asynchronous transition
state. The observed chemoselectivity is expected to contribute to
new (late-stage) sulfimidation reactions wherein the oxidation
potential of the functional groups determines the preferred
nitrene-accepting moiety.
Supporting Information. Experimental details, synthetic procedures,
NMR spectra, HRMS data, geometries (xyz coordinates) and energies of
stationary points and transition states (DFT).
Acknowledgements
Financial support from The Netherlands Organization for
Scientific Research (NWO TOP-Grant 716.015.001 to BdB) and
the research priority area Sustainable Chemistry of the University
of Amsterdam (RPA SusChem, UvA) is gratefully acknowledged.
Ed Zuidinga is thanked for HRMS measurements.
Keywords: sulfimidation • cobalt • nitrene radical • redox-active
ligand • chemoselectivity
References
[1]
For selected reviews see: (a) V. Bizet, C. M. M. Hendriks, C. Bolm, Chem.
Soc. Rev. 2015, 44, 3378‒3390. (b) H, Okamura, C, Bolm, Chem. Lett.
2004, 33, 482‒487. (c) T. Katsuki, Chem. Lett. 2005, 34, 1304‒1309. (d)
T. G. Driver, Org. Biomol. Chem. 2010, 8, 3831‒3846. (e) T, Uchida, T.
Katsuki, Chem. Rec. 2014, 14, 117‒129.
[7]
[8]
[9]
(a) M. Murakami, T. Uchida, T. Katsuki, Tetrahedron Lett. 2001, 42,
7071‒7074. (b) T. Ucida, Y. Tamura, M. Ohba, T. Katsuki, Tetrahedron
Lett. 2003, 44, 7965‒7968. (c) V. Bizet, L. Bugliono, C. Bolm, Angew.
Chem. Int. Ed. 2014, 53, 5639‒5642.
(a) T. Bach, C. Körber, Eur. J. Org. Chem. 1999, 1033‒1039. (b) J. Wang,
M. Frings, C. Bolm, Angew. Chem. Int .Ed. 2013, 52, 8661‒8665. (c) H.
Lebel, H. Piras, M. Borduy, ACS Catal. 2016, 6, 1109‒1112. (d) Y. Liu,
C.-M. Che, Chem. Eur. J. 2010, 16, 10494‒10501.
[2]
[3]
[4]
[5]
(a) M. Frings, C. Bolm, A. Blum, C. Gnamm, Eur. J. Med. Chem. 2017,
126, 225‒245. (b) C. M. M. Hendriks, J. Hartkamp, S. Wiezerek, A.-D.
Steinkamp, G. Rossetti, B. Lüscher, C. Bolm, Bioorg. Med. Chem. Lett.
2017, 27, 2659‒2662.
(a) H. Okamura, C. Bolm, Org. Lett. 2004, 6, 1305‒1307. (b) F. Collet, R.
H. Dodd, P. Dauban, Org. Lett. 2008, 10, 5473‒5476. (c) H. Lebel, H.
Piras, J. Bartholoméüs, Angew. Chem. Int. Ed. 2014, 53, 7300‒7304.
(a) S. Katsuyama, K. Sugino, Y. Sasazawa, Y. Nakano, H. Aono, K.
Morishita, M. Kawatani, K. Umezawa, H. Osada, S. Simizu, FEBS Letters
2016, 590, 1152‒1162. (b) I. Miyazaki, H. Okumura, S. Takagi, H. Osada,
Nat. Chem. Biol. 2010, 6, 667‒673.
[10] G. Y. Che, C. Bolm, Org. Lett. 2005, 7, 4983‒4985.
[11] C. C. Farwell, J. A. McIntosh, T. K. Hyster, Z. J. Wang, F. H. Arnold, J.
Am. Chem. Soc. 2014, 136, 8766‒8771.
(a) T. Yamamoto, M.-A. Kakimoto, M. Okawara, Bull. Chem. Soc. Jpn.
1979, 52, 841‒845. (b) The first synthesis of sulfimides was reported in
1922, but their structure was not thoroughly proven: F. G. Mann, W. J.
Pope, J. Chem. Soc., Trans. 1922, 121, 1052‒1055.
[12] Y. G. Cho, C. Bolm, Tetrahedron Lett. 2005, 46, 8007‒8008.
[13] A. Yoshimura, C. L. Makitalo, M. E. Jarvi, M. T. Shea, P. S. Postnikov,
G. T. Rohde, V. V. Zhdankin, A. Saito, M. S. Yusubov, Molecules 2019,
24, 979‒989.
(a) H. Takada, Y. Nishibayashi, K. Ohe, S. Uemura, Chem. Commun.
1996, 931‒932. (b) H. Takada, Y. Nishibayashi, K. Ohe, S. Uemura, J.
Org. Chem. 1997, 62, 6512‒6518. (c) H. Takada, K. Ohe, S. Uemura,
Angew. Chem. Int. Ed. 1999, 38, 1288‒1289. (d) Y. Liu, H. Wang, X.
Yang, Tetrahedron 2019, 75, 4697‒4702. (e) T. L. Lam, K. C.-H. Tso, B.
Cao, C. Yang, D. Chen, X.-Y. Chang, J.-S. Huang, C.-M. Che, Inorg.
Chem. 2017, 56, 4253‒4257.
[14] S. Raghaven, S. Mustafa, K. Rathore, Tetrahedron Lett. 2008, 49, 4256‒
4259.
[15] O. G. Mancheño, C. Bolm, Chem. Eur. J. 2007, 13, 6674‒6681.
[16] (a) N. P. van Leest, R. F. J. Epping, K. M. van Vliet, M. Lankelma, E. J.
van den Heuvel, N. Heijtbrink, R. Broersen, B. de Bruin, Single-Electron
Elementary Steps in Homogeneous Organometallic Catalysis. In
Advances in Organometallic Chemistry, Vol. 70 (Eds.: P. J. Pérez, F. G.
A. Stone, R. West), Elsevier, 2018; Vol. 70, pp 71‒180. (b) P. F. Kuijpers,
[6]
H. Nishikori, C. Ohta, E. Oberlin, R. Irie, T. Katsuki, Tetrahedron 1999,
55, 13937‒13946.
7
This article is protected by copyright. All rights reserved.