S. Niwayama, Y. Hiraga / Tetrahedron Letters 44 (2003) 8567–8570
8569
1
curves of the methyl or ethyl signals in the H NMR
1707, 1735, 2950–3000; HRMS(EI) calcd for C10H12O4:
196.0736, found 196.0736.
spectra. The structures of half-esters, 6a, 6b, 7a, and 7b
were determined based on H-1H COSY and HMBC
1
1
Half-ester (5a); white solid (mp 71–72°C), H NMR (500
MHz, CDCl3): l 6.27 (1H, dd, J=3.0. 5.5), 6.17 (1H, dd,
J=3.0, 5.5), 3.55 (3H, s), 3.29 (1H, dd, J=3.2, 10.3), 3.25
(1H, dd, J=3.2, 10.3), 3.15 (1H, m), 3.12 (1H, m), 1.45
(1H, br.d, J=8.7), 1.30 (1H, br.d, J=8.7); 13C NMR
(125 MHz, CDCl3): l 178.5, 172.8, 135.5. 134.3, 51.4,
48.7, 48.2, 48.0, 46.5, 46.0; IR (neat, cm−1): 1711, 1739,
2950–3000; HRMS(EI) calcd for C10H12O4: 196.0736,
found 196.0735.
analyses as well as differential NOE experiments, after
separation and purification of these half-esters.10 In
1
particular, the H NMR and 13C NMR data of half-
esters, 6b and 7b, were found to be identical to those
reported.11 These diesters, 3a and 3b showed higher
reactivity than exo-cis diesters, 1a and 1b, probably due
to the less crowded trans stereochemistry.
Half-ester (4b); colorless oil, 1H NMR (500 MHz,
CDCl3): l 6.20 (2H, m), 4.09 (2H, q, J=7.1), 3.09 (2H,
m), 2.61 (2H, m), 2.09 (1H, br.d, J=9.2), 1.47 (1H, br.d,
J=9.2), 1.21 (3H, t, J=7.1); 13C NMR (125 MHz,
CDCl3): l 179.1, 173.3, 138.1, 137.9, 60.8, 47.5, 47.2,
45.8, 45.5, 45.4, 14.0; IR (neat, cm−1): 1708, 1735, 2950–
3000; HRMS(EI) calcd for C11H14O4: 210.0892, found
210.0891.
From these data, we safely conclude that the character-
istic exo-facial selectivity applies to the carbonyl car-
bons that are attached on the norbornene skeleton in
our new monohydrolysis of a series of exo- and/or endo
norbornene diesters, despite the fact that the reaction
sites are one covalent bond from the norbornene ring.
To our knowledge, among non-enzymatic reactions,
these reactions are the first examples of such unique exo
selectivities.
Half-ester (5b); colorless oil, 1H NMR (500 MHz,
CDCl3): l 6.28 (1H, dd, J=3.0, 5.5), 6.20 (1H, dd,
J=3.0, 5.5), 4.03 (2H, m), 3.30 (1H, dd, J=3.2, 10.3),
3.25 (1H, dd, J=3.2, 10.3), 3.16 (1H, m), 3.14 (1H, m),
1.46 (1H, br.d, J=8.7), 1.31 (br. d, J=8.7), 1.19 (3H, t,
J=7.1); 13C NMR (125 MHz, CDCl3): l 177.9, 172.3,
135.4. 134.4, 60.4, 48.7, 48.5, 48.0, 46.6, 46.2, 14.0; IR
(neat, cm−1): 1711, 1737, 2950–3000; HRMS(EI) calcd for
C11H14O4: 210.0892, found 210.0892.
Acknowledgements
This work is supported by the National Science Foun-
dation-CAREER (CHE-0239527) and the Elsa U.
Pardee Foundation. S. N. thanks Banyu Pharmaceuti-
cal Co. Ltd. for the Banyu Award in Synthetic Organic
Chemistry.
7. Formation of a small amount of dicarboxylic acids was
occasionally observed due to this prolonged reaction
time.
8. Niwayama, S. Tetrahedron Lett. 2000, 41, 10163–10166.
9. The somewhat smaller difference in the yields for mono-
hydrolyses of 1b and 2b than those of 1a and 2a may be
attributed to the differences in their solubilities in this
reaction mixture.
10. The spectral data for these products are as follows:
Half-ester (6a); white solid (mp 121–122°C), 1H NMR
(500 MHz, CDCl3): l 6.28 (1H, dd, J=3.2, 5.5), 6.07
(1H, dd, J=2.8, 5.5), 3.64 (3H, s), 3.36 (1H, dd, J=3.7,
4.6), 3.26 (1H, m), 3.19 (1H, m), 2.71 (1H, dd, J=1.6,
4.6), 1.60 (1H, br.d, J=8.9), 1.47 (1H, dq, J=1.6, 8.9);
13C NMR (125 MHz, CDCl3): l 179.0, 173.6, 137.5.
135.3, 51.9, 47.8, 47.6, 47.4, 47.1, 45.6; IR (neat, cm−1):
1696, 1724, 2950–3000; HRMS(EI) calcd for C10H12O4:
196.0736, found 196.0735.
References
1. For example, see: (a) Inagaki, S.; Fujimoto, H.; Fukui,
K. J. Am. Chem. Soc. 1976, 98, 4054–4061; (b) Schleyer,
P. v. R. J. Am. Chem. Soc. 1967, 89, 701–703; (c)
Rondan, N. G.; Paddon-Row, M. N.; Caramella, P.;
Houk, K. J. Am. Chem. Soc. 1981, 103, 2436–2438; (d)
Ohwada, T. Tetrahedron, 1993, 49, 7649–7656; (e) Free-
man, F. Chem. Rev. 1975, 75, 439–490; (f) Brown, H. C.;
Krishnamurthy, S. J. Am. Chem. Soc. 1972, 7159–7161.
2. (a) Klunder, A. J. H.; van Gastel, F. J. C.; Zwanenburg,
B. Tetrahedron Lett. 1988, 29, 2697–2700; (b) Van der
Eycken, J.; Vandewalle, M.; Heinemann, G.; Laumen,
K.; Schneider, M. P.; Kredel, J.; Saurer, J. J. Chem. Soc.,
Chem. Commun. 1989, 306–308; (c) Van Gastel, F. J. C.;
Klunder, A. J. H.; Zwanenburg, B. Recueil des Travaux
Chimiques des Pay-Bas 1991, 110, 175–184.
Half-ester (7a); colorless oil, 1H NMR (500 MHz,
CDCl3): l 6.28 (1H, dd, J=3.2, 5.5), 6.12 (1H, dd,
J=2.8, 5.5), 3.71 (3H, s), 3.41 (1H, dd, J=3.7, 4.6), 3.28
(1H, m), 3.13 (1H, m), 2.64 (1H, dd, J=1.6, 4.6), 1.59
(1H, br.d, J=8.7), 1.47 (1H, dq, J=1.6, 8.7); 13C NMR
(125 MHz, CDCl3): l 177.2, 174.7, 137.8. 135.2, 52.2,
47.6, 47.6, 47.5, 47.1, 45.6; IR (neat, cm−1): 1696, 1724,
2950–3000; HRMS(EI) calcd for C10H12O4: 196.0736,
found 196.0735.
3. For example, see: (a) Gleiter, R.; Paquette, L. A. Acc.
Chem. Res. 1983, 16, 328–334; (b) Kobuke, Y.; Sugimoto,
T.; Furukawa, J. J. Org. Chem. 1976, 41, 1457–1459; (c)
Brown, F. K.; Houk, K. N. J. Am. Chem. Soc. 1984, 107,
1971–1978.
Half-ester (6b); colorless oil, 1H NMR (500 MHz,
CDCl3): l 6.27 (1H, dd, J=3.2, 5.5), 6.06 (1H, dd,
J=2.6, 5.5), 4.08 (2H, m), 3.34 (1H, dd, J=3.7, 4.6), 3.25
(1H, m), 3.18 (1H, m), 2.71 (1H, dd, J=1.6, 4.6), 1.60
(1H, br.d, J=8.9), 1.46 (1H, dd, J=1.6, 8.9), 1.22 (3H, t,
J=7.1); 13C NMR (125 MHz, CDCl3): l 180.0, 173.1,
137.5. 135.2, 60.7, 47.9, 47.7, 47.3, 47.2, 45.7, 14.2; IR
(neat, cm−1): 1704, 1732, 2950–3000; HRMS(EI) calcd for
C11H14O4: 210.0892, found 210.0892.
4. Niwayama, S. J. Org. Chem. 2000, 65, 5834–5836.
5. Craig, D. J. Am. Chem. Soc. 1951, 73, 4889–4892 and
references cited therein.
6. The spectral data for these products are as follows:
Half-ester (4a); colorless oil, 1H NMR (500 MHz,
CDCl3): l 6.18 (2H, m), 3.62 (3H, s), 3.08 (2H, m), 2.61
(2H, m), 2.06 (1H, br.d, J=9.2), 1.47 (1H, br.d, J=9.2);
13C NMR (125 MHz, CDCl3): l 179.8, 173.8, 138.0.
137.9, 51.8, 47.4, 47.3, 45.7, 45.4, 45.3; IR (neat, cm−1):