1022 Organometallics, Vol. 26, No. 4, 2007
Bambirra et al.
(t, JCH ) 128.5 Hz, NCH2) (all other NCH2 resonances obscured
SiCH2). Anal. Calcd for C44H106N8Si4Y2: C, 50.94; H, 10.30; N,
10.80. Found: C, 50.60; H, 10.22; N, 10.34.
due to broadening), 48.8 (q, JCH ) 136.4 Hz, NMe), 34.5 (t, JCH
)
124.4 Hz, NCH2CH2CH2Me), 29.3 (dt, JYC ) 35.9 Hz, JCH ) 98.2
Hz, YCH2SiMe3), 21.8 (t, JCH ) 124.1 Hz, NCH2CH2CH2Me), 14.8
(q, JCH ) 124.7 Hz, NCH2CH2CH2Me), 5.0 (q, JCH ) 115.9 Hz,
CH2SiMe3). 13C NMR (125.7 MHz, -40 °C, C7D8) δ: 60.1 (t, JCH
) 134.1 Hz, NCH2CH2CH2Me), 59.0 (t, JCH ) 138.4 Hz, NCH2),
57.0 (t, JCH ) 132.0 Hz, NCH2), 54.8 (t, JCH ) 127.6 Hz, NCH2),
54.7 (t, JCH ) 128.1 Hz, NCH2), 54.4 (t, JCH ) 136.3 Hz, NCH2),
52.9 (t, JCH ) 132.0 Hz, NCH2), 51.1 (t, JCH ) 132.2 Hz, NCH2),
49.4 (t, JCH ) 134.1 Hz, NCH2), 48.6 (q, JCH ) 136.3 Hz, NMe),
34.7 (t, JCH ) 126.1 Hz, NCH2CH2CH2Me), 29.6 (dt, JYC ) 36.5
Synthesis of [Me2TACN(SiMe2)NtBu]Y(CH2SiMe3)2 (3a). At
ambient temperature, a solution of Me
2TACN(SiMe2)NHtBu (0.65
g, 2.28 mmol) in pentane (10 mL) was added dropwise to a solution
of Y(CH2SiMe3)3(THF)2 (1.12 g, 2.28 mmol) in pentane (60 mL).
The reaction mixture was stirred for 2 h, after which the volatiles
were removed in vacuo. The residue was stripped of remaining
THF by stirring with 5 mL of pentane, which was subsequently
removed under reduced pressure. The resulting sticky solid was
then extracted with pentane (2 × 60 mL) and concentrated. Cooling
the extract to - 30 °C produces the crystalline title compound (0.92
g, 1.67 mmol, 73%). Compound 3b was prepared analogously.
Hz, JCH ) 97.2 Hz, YCH2SiMe3), 27.5 (dt, JYH ) 37.5 Hz, JCH
99.5 Hz, YCH2SiMe3), 22.0 (t, JCH ) 125.6 Hz, NCH2CH2CH2-
Me), 15.3 (q, JCH ) 123.0 Hz, NCH2CH2CH2Me), 5.4 (q, JCH
)
1H NMR (300 MHz, 25 °C, C6D6) δ: 2.85-2.76 (m, 2 H,
NCH2), 2.30 (s, 6 H, NMe), 2.25-2.11 (m, 4 H, NCH2), 1.88-
1.62 (m, 6 H, NCH2), 1.51 (s, 9 H, tBu), 0.45 (s, 18 H, CH2SiMe3),
0.26 (s, 6 H, SiMe2), -0.51 (dd, JHH ) 10.5 Hz, JYH ) 3.0 Hz, 2
H, YCHH), -0.76 (dd, JHH ) 10.5 Hz, JYH ) 3.0 Hz, 2 H, YCHH).
13C NMR (500 MHz, 25 °C, C6D6) δ: 57.2 (t, JCH ) 132.1 Hz,
NCH2), 55.1 (t, JCH ) 128.9 Hz, NCH2), 52.5 (s, tBu C), 50.0 (q,
JCH ) 134.0 Hz, NMe), 45.9 (t, JCH ) 133.7 Hz, NCH2), 36.6 (q,
JCH ) 124.0 Hz, tBu Me), 32.9 (dt, JCH ) 96.6 Hz, JYH ) 37.0
)
117.0 Hz, CH2SiMe3), 5.2 (q, JCH ) 117.0 Hz, CH2SiMe3). Anal.
Calcd for C22H53N4Si2Y: C, 50.94; H, 10.30; N, 10.80; Y, 17.14.
Found: C, 50.91; H, 10.33; N, 10.80; Y, 17.08.
[Me2TACN(CH2)2NnBu]Y(CH2SiMe3)2 (2c) with [HNMe2Ph]-
[B(C6F5)4]. A solution of 2c (10.3 mg, 20 µmol) in C6D5Br (0.6
mL) was added to [HNMe2Ph][B(C6F5)4] (18 mg, 20 µmol). The
obtained solution was transferred to an NMR tube and analyzed
by NMR spectroscopy, which showed full conversion to the
corresponding cationic monoalkyl species, SiMe4, and free PhNMe2.
1H NMR (500 MHz, 25 °C, C6D5Br) δ: (t, J ) 7.2 Hz, 2 H,
m-H PhNMe2), 6.94 (t, J ) 7.2 Hz, 1 H, p-H PhNMe2), 6.38 (d,
J ) 7.2 Hz, 2 H, o-H PhNMe2), 3.98 (t, J ) 7.0 Hz, 2 H, CH2-
CH2CH2Me), 2.72 (m, 2 H, NCH2), 2.68 (s, 6 H, NMe), 2.51 (m,
4 H, NCH2), 2.36-2.18 (m, 10 H, NCH2), 1.31 (m, 2 H, CH2CH2-
CH2Me), 0.97 (t, J ) 7.0 Hz, 3 H, CH2CH2CH2Me), 0.88 (m, 2 H,
CH2CH2CH2Me), 0.08 (s, 9 H, CH2SiMe3), -1.10 (2 H, CH2SiMe3).
13C NMR (125.7 MHz, 25 °C, C6D5Br) δ: 60.9 (t, JCH ) 138.4,
NCH2CH2CH2Me), 52.5 (t, JCH ) 128.5 Hz, NCH2), 50.3 (NMe)
(all other NCH2 resonances obscured due to broadening), 33.6
(NCH2CH2CH2Me), 31.8 (dt, JYC ) 46.4 Hz, YCH2SiMe3), 20.9
(NCH2CH2CH2Me), 14.3 (NCH2CH2CH2Me), 3.9 (q, JCH ) 116.9
Hz, CH2SiMe3).
Hz, YCH2), 5.2 (q, JCH ) 116.0 Hz, CH2SiMe3), 4.1 (q, JCH
)
116.0 Hz, SiMe2). Anal. Calcd for C22H55N4Si3Y: C, 48.14; H,
10.10; N, 10.21; Y, 16.20. Found: C, 47.93; H, 10.95; N, 10.25;
Y, 16.19.
Reaction of [Me2TACN(SiMe2)NtBu)]Y(CH2SiMe3)2 (3a) with
[HNMe2Ph][B(C6F5)4]. A solution of 3a (27 mg, 49.3 µmol) in
C6D5Br (0.6 mL) was added to [HNMe2Ph][B(C6F5)4] (39 mg, 49.3
µmol). The obtained solution was transferred to an NMR tube and
analyzed by NMR spectroscopy, which showed full conversion to
the corresponding cationic monoalkyl species, SiMe4, and free
1
PhNMe2. H NMR (500 MHz, -30 °C, C6D5Br) δ: 2.70-2.67
(m, 2 H, NCH2), 2.46-2.44 (m, 2 H, NCH2), 2.35-2.25 (m, 8 H,
NCH2), 2.14 (s, 6 H, TACN NMe), 1.18 (s, 9 H, tBu), 0.04 (s, 9
H, CH2SiMe3), 0.03 (s, 6 H, SiMe2), -0.89 (br, 2 H, CH2SiMe3).
13C NMR (125.7 MHz, -30 °C, C6D5Br) δ: 56.4 (t, JCH ) 135.4
Hz, NCH2), 53.3 (s, tBu C), 52.9 (t, JCH ) 140.2 Hz, NCH2), 46.4
(q, JCH ) 137.0 Hz, TACN NMe), 45.5 (t, JCH ) 138.6 Hz, NCH2),
Synthesis of {[η3:η1-[Me2TACN(CH2)2NtBu]Y(CH2SiMe3)}-
{η3:µ-η1-[Me2TACN(CH2)2NtBu]Y(CH2SiMe3)3} (2a′). A solution
of Me2TACN-(CH2)2NHtBu (0.25 g, 1.00 mmol) in pentane (5 mL)
was added dropwise to a solution of Y(CH2SiMe3)3(THF)2 (0.49
g, 1.00 mmol) in pentane (50 mL) at ambient temperature. The
reaction mixture was stirred for 2 h, during which time a white
precipitate had formed. The volatiles were removed in a vacuum,
40.1 (q, JCH ) 140.2 Hz, tBu Me), 39.7 (dt, JCH ) 91.9 Hz, JYC
)
42.0 Hz, YCH2), 3.9 (q, JCH ) 117.7 Hz, YCH2SiMe3), 2.7 (q, JCH
) 117.7 Hz, SiMe2).
Synthesis of [Me2TACN(CH2)2NtBu]La(CH2SiMe3)2 (4a).
Solid LiCH2SiMe3 (0.28 g, 3.00 mmol) was added to a suspension
of LaBr3(THF)4 (0.67 g, 1.00 mmol) in THF (60 mL, ambient
temperature). Within 5 min a bright yellow solution was formed.
The solution was stirred for 3 h, after which it was reacted with
Me2TACN(CH2)2NHtBu (0.25 g, 1.00 mmol), and this solution was
stirred for 3 h, after which the volatiles were removed in vacuo.
The mixture was extracted with pentane (2 × 50 mL), and the
obtained extract was concentrated to 20 mL and cooled (- 30 °C),
yielding the product (0.25 g, 0.44 mmol, 48%).
1H NMR (500 MHz, 25 °C, C6D6) δ: 3.08 (m, 2 H, NCH2),
2.82 (m, 2 H, NCH2), 2.40-2.35 (m, 2 H, NCH2), 2.27 (s, 6 H,
NMe2), 2.17-2.13 (m, 4 H, NCH2), 1.79-1.74 (m, 2 H, NCH2),
1.71-1.66 (m, 3 H, NCH2), 1.44 (s, 9 H, tBu), 0.46 (s, 18 H, Me3-
SiCH2), -0.66 (d, JHH ) 10.5 Hz, 2 H, Me3SiCH2), -0.80 (d, JHH
) 10.5 Hz, 2 H, Me3SiCH2). 13C NMR (125.7 MHz, 25 °C, C6D6)
δ: 59.7 (t, JCH ) 131.6 Hz, NCH2), 55.7 (t, JCH ) 135.0 Hz, NCH2),
1
and the residue was analyzed by H NMR (C6D6). The spectrum
displays the resonances of 2a and the title compound in a 1:1 ratio.
The crude mixture was extracted with pentane (2 × 40 mL), leaving
pure dimer 2a′ as a white powder (0.19 g, 36% calculated on Y).
1H NMR (500 MHz, 20 °C, C6D6) δ: 4.19 (m, 1 H, NCH2),
3.31 (m, 1 H, NCH2), 3.23 (t, JHH ) 11.5 Hz, 2 H, NCH2), 3.12-
2.90 (m, 7H, NCH2), 2.75-2.64 (m, 4 H, NCH2), 2.51 (s, 3 H,
NMe), 2.41 (s, 6 H, NMe), 2.38 (s, 3 H, NMe), 2.28-2.23 (m, 3
H, NCH2), 2.15-2.05 (m, 6 H, NCH2), 1.92-1.75 (m, 6 H, NCH2),
1.58 (s, 9 H, tBu), 1.55 (m, 2 H, NCH2), 1.47 (s, 9 H, tBu), 0.52
(s, 9 H, Me3SiCH2), 0.50 (s, 9 H, Me3SiCH2), 0.43 (s, 9 H, Me3-
SiCH2), 0.40 (s, 9 H, Me3SiCH2), -0.40 (d, JHH ) 10.6 Hz, JYH
)
2.5 Hz, 2 H, Me3SiCH2), -0.62 (d, JHH ) 11.0 Hz, JYH ) 2.5 Hz
2 H, Me3SiCH2), -0.78 (d, JHH ) 10.5 Hz, 4 H, Me3SiCH2). The
JYH coupling on the YCH2 protons is unresolved. 13C{H} NMR
(125.7 MHz, 20 °C, C6D6) δ: 61.6 (NCH2), 59.1 (NCH2), 57.4
(NCH2), 56.1 (s, tBu C), 55.6 (NCH2), 55.1 (NCH2), 54.3 (NCH2),
54.1 (NCH2), 53.8 (NCH2), 53.3 (s, tBu C), 52.8 (NCH2), 51.4
(NCH2), 51.1 (NCH2), 50.7 (NCH2), 49.3 (NCH2), 49.0 (NCH2),
48.2, 48.1, 48.0 (NMe), 42.7 (NCH2), 39.6 (dt, JYC ) 33.0 Hz,
YCH2), 34.4 (tBu Me), 34.0 (dt, JYC ) 34.7 Hz, YCH2), 33.7 (dt,
JYC ) 34.5 Hz, YCH2), 31.2 (tBu Me), 5.5, 5.4, 5.2, 4.9 (Me3-
54.9 (s, tBu C), 54.3 (t, JCH ) 133.4 Hz, NCH2), 52.1 (t, JCH
129.8 Hz, NCH2), 48.1 (t, JCH ) 103.6 Hz, LaCH2), 47.5 (t, JCH
128.0 Hz, NCH2), 47.0 (q, JCH ) 135.1 Hz, NMe), 30.2 (q, JCH
)
)
)
122.8, tBu Me), 5.2 (q, JCH ) 115.8 Hz, Me3SiCH2). 1H NMR (300
MHz, 20 °C, THF-d8) δ: 3.14 (m, 2 H, NCH2), 3.05 (m, 2H,
NCH2), 2.97-2.84 (m, 12 H, NCH2), 2.68 (s, 6 H, NMe2), 1.29 (s,
9 H, tBu), -0.07 (s, 18 H, Me3SiCH2), -0.98 (d, JHH ) 8.0 Hz, 2
H, Me3SiCH2), -1.12 (d, JHH ) 8.0 Hz, 2 H, Me3SiCH2). 13C NMR