deprotection steps in a glycosylation strategy has been
accomplished by the use, among others, of rationally designed
protecting groups13 or by regioselective coupling of polyol
glycosyl acceptors.14 In this context, we believe that the design
of methods that allow the direct exchange of anomeric leaving
groups between partially unprotected sugar building blocks
(glycosyl donors or acceptors) would be useful.15
We have been interested in the study of regioselective
glycosylation strategies16 of partially unprotected glycosyl
donors with diol acceptors.17,18 More recently we have described
the use of bis(pyridinium)iodonium (I) tetrafluoroborate (IPy2-
BF4)19 for the transformation of NPGs into glycosyl fluorides
(e.g., 1a f 2, Scheme 1).20 A recent report by Huang and
Winssinger21 on the use of IPy2BF4 for the transformation 1b
f 2 and for promoting glycosylation of thioglycosides has
prompted us to disclose our own results in this area.
IPy2BF4/HF-Pyridine: A New Combination of
Reagents for the Transformation of Partially
Unprotected Thioglycosides and n-Pentenyl
Glycosides to Glycosyl Fluorides
J. Cristo´bal Lo´pez,* Paloma Bernal-Albert, Clara Uriel,
Seraf´ın Valverde, and Ana M. Go´mez*
Instituto de Qu´ımica Orga´nica General, CSIC, Juan de la
CierVa 3, Madrid 28006, Spain
clopez@iqog.csic.es; anago@iqog.csic.es
ReceiVed August 31, 2007
On the basis of the similar reactivity displayed by NPGs and
thioglycosyl donors toward iodonium-based promoters,22 and
our own experience with these donors,23 we decided to
investigate: (i) the use of IPy2BF4 as a promoter for glycosy-
lation of NPGs, (ii) the use of IPy2BF4 for the transformation
of thioglycosides into glycosyl fluorides (e.g., 1b f 2, Scheme
1), and (iii) the transformation of partially unprotected NPGs
and thioglycosides to glycosyl fluorides. To the best of our
knowledge, no direct method for the transformation of partially
The combination of bis(pyridinium)iodonium (I) tetrafluo-
roborate (IPy2BF4), and hydrogen fluoride pyridine (HF-py)
forms an iodine monofluoride (IF) synthetic equivalent that
can be used in the preparation of partially unprotected
glycosyl fluorides from partially unprotected n-pentenyl
glycosides and thioglycosides, thus avoiding the need for
the protection/deprotection steps normally required in that
transformation.
(10) (a) Mootoo, D. R.; Konradsson, P.; Udodong, U.; Fraser-Reid, B.
J. Am. Chem. Soc. 1988, 110, 5583-5584. (b) Fraser-Reid, B.; Wu, Z.;
Udodong, U. E.; Ottosson, H. J. Org. Chem. 1990, 55, 6068-6070.
(11) (a) Kanie, O.; Ito, Y.; Ogawa, T. J. Am. Chem. Soc. 1994, 116,
12073-12074. (b) Kanie, O.; Ito, Y.; Ogawa, T. Tetrahedron Lett. 1996,
26, 4551.4554. (c) Kanie, O. In Carbohydrates in Chemistry and Biology;
Ernst, B., Hart, G. W., Sinay¨, P., Eds., Wiley-VCH: Weinheim, 2000; Vol.
1, Chapter 16.
(12) Demchenko, A. V.; De Meo, C. Tetrahedron Lett. 2002, 43, 8819-
Oligosaccharides are pivotal compounds in many biological
recognition processes.1,2 Consequently considerable research has
been directed toward the development of strategies for glyco-
sylation.3,4 The efficiency of these strategies often relies on the
choice of the glycosyl donor5 and the minimization of protect-
ing-group manipulations.6 Thioglycosides,7 n-pentenyl glyco-
sides (NPGs),8 and glycosyl fluorides9 are reliable glycosyl
donors, which can also function as glycosyl acceptors in armed/
disarmed,10 and orthogonal11 (or semi-orthogonal)12 glycosy-
lation strategies. Minimization in the number of protection/
8822.
(13) Litjens, R. E. J. N.; van den Bos, L. J.; Code´e, J. D. C.; Overkleeft,
H. S. van der Marel, G. A. Carbohydr. Res. 2007, 342, 419-429.
(14) Fraser-Reid, B.; Lo´pez, J. C.; Go´mez, A. M.; Uriel, C. Eur. J. Org.
Chem. 2004, 1387-1395.
(15) (a) Hanessian, S.; Lou, B. Chem. ReV. 2000, 100, 4443-4463. (b)
Hanessian, S.; Lu, P. P.; Ishida, H. J. Am. Chem. Soc. 1998, 120, 13296-
13330.
(16) Uriel, C.; Agocs, A.; Go´mez, A. M.; Lo´pez, J. C.; Fraser-Reid, B.
Org. Lett. 2005, 7, 4899-4902.
(17) Lo´pez, J. C.; Agocs, A.; Uriel, C.; Go´mez, A. M.; Fraser-Reid, B.
Chem. Commun. 2005, 5088-5090.
(18) (a) Zhang, Y.; Fechter, E. J.; Wang, T-S. A.; Barrett, D.; Walker,
S.; Kahne, D. E. J. Am. Chem. Soc. 2007, 129, 3080-3081. (b) Gu, G.;
Du, Y.; Linhardt, R. J. J. Org. Chem. 2004, 69, 5497-5500. (c) Plante, O.
J.; Palmacci, E. R.; Andrade, R. B.; Seeberger, P. H. J. Am. Chem. Soc.
2001, 123, 9545-9554. (d) Green, L.; Hinzen, B.; Ince, S. J.; Langer, P.;
Ley, S. V.; Warriner, S. L. Synlett 1998, 440-442. (e) Boons, G. J.; Zhu,
T. Synlett 1997, 809-811.
(19) Barluenga, J.; Gonza´lez, J. M.; Campos, P. J.; Asensio, G. Angew.
Chem., Int. Ed. Engl. 1985, 24, 319-320.
(20) Lo´pez, J. C.; Uriel, C.; Guillamo´n-Mart´ın, A.; Valverde, S.; Go´mez,
A. M. Org. Lett. 2007, 9, 2759-2762.
(21) Huang, K-T.; Winssinger, N. Eur. J. Org. Chem. 2007, 1887-1890.
(22) (a) Konradsson, P; Mootoo, D. R.; McDevitt, R. E.; Fraser-Reid,
B. J. Chem. Soc., Chem. Commun. 1990, 270-272. (b) Veenenman, G.
H.; van Boom, J. H. Tetrahedron Lett. 1990, 31, 275-278. (c) Konradsson,
P.; Udodong, U. E.; Fraser-Reid, B. Tetrahedron Lett. 1990, 31, 4313-
4316.
(23) (a) Lo´pez, J. C.; Go´mez, A. M.; Valverde, S.; Fraser-Reid, B. J.
Org. Chem. 1995, 60, 3859-3870. (b) Lo´pez, J. C.; Go´mez, A. M.;
Valverde, S.; Fraser-Reid, B. Tetrahedron Lett. 2003, 44, 1417-1420. (c)
Uriel, C.; Go´mez, A. M.; Lo´pez, J. C.; Fraser-Reid, B. Synlett 2003, 2203-
2207.
(1) Reuter, G.; Gabius, H. J. Cell. Mol. Life Sci. 1999, 55, 368-422.
(2) Varki, A. Glycobiology 1993, 3, 97-130.
(3) Toshima, K.; Tatsuta, K. Chem. ReV. 1993, 93, 1503-1531.
(4) (a) Boons, G.-J. Tetrahedron 1996, 52, 1095-1121. (b) Davis, B.
G. J. Chem. Soc., Perkin Trans. 1 2000, 2137-2160. (c) Demchenko, A.
V. Lett. Org. Chem. 2005, 2, 580-589.
(5) Paulsen, H. Angew. Chem., Int. Ed. Engl. 1990, 29, 823-938.
(6) Baeschlin, D. K.; Green, L. G.; Hahn, M. G.; Hinzen, B.; Ince, S. J.;
Ley, S. V. Tetrahedron Asymmetry 2000, 11, 173-197.
(7) (a) Garegg, P. J. Adv. Carbohydr. Chem. Biochem. 1997, 52, 179-
266. (b) Oscarson, S. In Carbohydrates in Chemistry and Biology; Ernst,
B., Hart, G. W., Sinay¨, P., Eds.; Wiley-VCH: Weinheim, 2000; Vol. 1, pp
93-116.
(8) (a) Fraser-Reid, B.; Konradsson, P.; Mootoo, D. R. J. Chem. Soc.,
Chem. Commun. 1988, 823-825. (b) Fraser-Reid, B.; Udodong, U. E.; Wu,
Z.; Ottosson, H.; Merrit, J. R.; Rao, C. S.; Roberts, C.; Madsen, R. Synlett
1992, 927-942.
(9) (a) Shimizu, M.; Togo, H.; Yokoyama, M. Synthesis 1998, 799-
822. (b) Toshima, K. Carbohydr. Res. 2000, 327, 15-26. (c) Mukaiyama,
T. Angew. Chem., Int. Ed. 2004, 43, 5590-5614.
10.1021/jo7018653 CCC: $37.00 © 2007 American Chemical Society
Published on Web 11/29/2007
10268
J. Org. Chem. 2007, 72, 10268-10271