Chemistry Letters 2002
131
OR
OR
1) Me3SiCH2CH2OH
DCC, pyridine, MeCN
rt, 16 h
LiAlH4
Et2O
Ph3P=CHCO2Me
DMSO, rt, 2 h
OMe
Me
rt, 0.5 h
BocHN
9 : R = TBS
16 : R = Cl2Bzl a
CON
BocHN
CHO
2) 4N HCl, rt, 1 h
BocHN
CO2H
H2N
CO2CH2CH2SiMe3
3) 10 aq. NH3
10 : R = TBS (98
)
21
13
17 : R = Cl2Bzl (quant.)
O-Cl2Bzl
OR
OR
TMSOTf, CH2Cl2
0
, 2 h for 11
18
or
BocHN
Me3SiCH2CH2O2C
CO2Me
BocHN
CO2Me
H2N
CO2Me
4N HCl-dioxane
NH
rt, 1 h for 18
12 : R = H
19 : R = Cl2Bzl
11 : R = TBS (60 , E only)
18 : R = Cl2Bzl (80 , E only)
22
OR
Boc-D-Phe-OH (13)
Scheme 5.
DEPC, Et3N
DMF
10 , 2 h; rt, 19 h
BocHN
CONH
CO2Me
Science, Sportsand Culture, Japan for Grants-in-Aid.
14 : R = (EtO)2P(O) (78 in 2 steps)
20 : R = Cl2Bzl (quant. in 2 steps)
Dedicated to Prof. Teruaki Mukaiyama on the occasion of his
75th birthday.
a Prepared from O-2,6-dichlorobenzyl-Boc-L-tyrosine (15).8
Scheme 3.
References and Notes
1
O-Cl2Bzl
Y. Nakao, A. Masuda, S. Matsunaga, and N. Fusetani, J. Am.
Chem. Soc., 121, 2425 (1999).
T. Shioiri and Y. Hamada, Synlett, 2001, 184.
1) 4N HCl
dioxane
2
3
O
MeOH
rt
J. Deng, Y. Hamada, T. Shioiri, S. Matsunaga, and N. Fusetani,
Angew. Chem., Int. Ed. Engl., 33, 1792 (1994); J. Deng, Y.
Hamada, and T. Shioiri, Tetrahedron Lett., 37, 2261 (1996).
N. Irako and T. Shioiri, the 121st Annual Meeting of the
Pharmaceutical Society of Japan, Sapporo, March 2001, Abstr.,
Vol. 2, p 52.
The possibility of the intramolecular Michael addition of the
amino group of phenylalanine to the vinylogoustyroisne
residue was already suggested.1 For a piperazinone synthesis
through the Michael addition, see also D. A. Goff and R. N.
Zuckermann, Tetrahedron Lett., 37, 6247 (1996).
S. Takuma, Y. Hamada, and T. Shioiri, Chem. Pharm, Bull. 30,
3147 (1982) and referencestherein.
HN
20
rt, 63 h
77
NH2 OMe
2) 10 aq. NH3
O
4
5
4
O-Cl2Bzl
O
O-Cl2Bzl
O
H
H
HN
HN
O
6
7
NH OMe
NH OMe
O
The phenolic O-phosphorylation by use of DEPC was already
´
known: A. Guzman and E. Diaz, Synth. Commun., 27, 3035
(1997).
T. Shioiri, T. Imaeda, and Y. Hamada, Heterocycles, 46, 421
(1997).
3
3a
8
9
Scheme 4.
The piperazinone 3 will be more stable than its isomer 3a, from
which the stereochemical assignment of both isomers will be
deduced in addition to spectral evidence. 3: IR vmax (CHCl3)
cmꢁ1: 3378, 2951, 1732, 1667, 1510, 1439, 1240, 1017, 756.
1H-NMR (TMS/CD3OD, 500 MHz) ꢂ 2.26(dd, J ¼ 16:1,
9.1 Hz, 1H), 2.56(dd, J ¼ 6:7, 14.3 Hz, 1H), 2.61(dd, J ¼
16:1, 3.1 Hz, 1H), 2.66(dd, J ¼ 14:0, 9.1 Hz, 1H), 2.81–2.86(m,
2H), 3.19–3.28(m, 1H), 3.34–3.39(m, 2H), 3.43(s, 3H), 5.16(s,
2H), 5.16(s, 2H), 6.89(d, J ¼ 8:5 Hz, 2H), 7.07(d, J ¼ 8:8 Hz,
2H), 7.10–7.34(m, 8H); 3a: IR vmax(neat) cmꢁ1: 3326, 2857,
1732, 1661, 1510, 1439, 1240, 1177, 1017, 765. 1H-NMR
(TMS/CD3OD, 500 MHz) ꢂ 2.41(dd, J ¼ 15:2, 9.8 Hz, 1H),
2.47(dd, J ¼ 15:2, 5.0 Hz, 1H), 2.64(d, J ¼ 7:3 Hz, 2H),
2.81(dd, J ¼ 13:7, 9.8 Hz, 1H), 3.05(dd, J ¼ 13:7, 3.4 Hz,
1H), 3.40–3.44(m, 1H), 3.51(s, 3H), 3.55(dd, J ¼ 9:8, 3.4 Hz,
1H), 3.60(dt, J ¼ 7:3, 3.7 Hz, 1H), 5.18(s, 2H), 6.90(d,
J ¼ 8:8 Hz, 2H), 7.07(d, J ¼ 8:8 Hz, 2H), 7.10–7.80(m, 8H).
wasobtained in 77% yield, 9;10 (Scheme 4). The diastereoisomer
3a, a component of pseudotheonamide A2 (2), wasalso obtained
under some reaction conditions. Addition of triethylamine to
methanol increased this diastereoisomer 3a (3, 46%; 3a, 41%).
Interestingly, the intermolecular Michael addition of the ꢀ,ꢁ-
unsaturated ester 18 with D-phenylalanine trimethylsilylethyl
ester (21), prepared from 13, did not proceed at all under
analogousreaction conditionsto give the Michael adduct 22, as
shown in Scheme 5.
Thus, we could establish a convenient route to the
piperazinone ring component of pseudocyclotheonamide A1 by
use of an intramolecular Michael ring closure as the key step. The
method developed here will offer the general procedure for the
construction of the piperazinone skeleton. The total synthesis of
pseudotheonamide A1 (1) isnow under way.
10 Alkaline hydrolysis of 3 smoothly afforded the corresponding
carboxylic acid.
The authorsare grateful to the Minitsry of Education,