J. Conradie, J. C. Swarts
FULL PAPER
and a Ag/Ag+ reference electrode was used. The reference electrode
was constructed from a silver wire inserted into a solution of
0.0100 moldm–3 AgNO3 and 0.1 moldm–3 [N(nBu4)][PF6] in
CH3CN in a luggin capillary with a vycor tip.[9,34] Data, uncor-
rected for junction potentials, were collected with an Adalab-PCTM
and AdaptTM data acquisition kit (Interactive Microwave, Inc.)
with locally developed software, and analyzed with Hyperplot
(JHM International, Inc.). Successive experiments under the same
experimental conditions showed that all formal reduction and oxi-
dation potentials were reproducible within 5 mV. All cited poten-
tials are reported against the Fc/Fc+ couple as suggested by IU-
PAC,[35] but were experimentally measured against Ag/Ag+. The
Fc/Fc+ couple exhibited under our experimental conditions EoЈ =
0.077 V vs. Ag/Ag+, ipc/ipa = 0.98 and ΔEp = 74 mV. Bulk electro-
lyses were carried out utilising a BAS CV-27 voltammograph at
25.0(1) °C in 2.5 cm3 acetonitrile. A three-electrode cell equipped
with a Pt wire auxiliary electrode [isolated from the sample by me-
ans of a 0.1 moldm–3 (nBu)4NPF6/CH3CN salt bridge], a glassy
carbon working electrode (electro-active areaϮ3 cm2) and the Ag/
Ag+ reference electrode described above were employed. Current
readings and the integrated current (Coulomb units) were recorded
manually at different times, t, during the course of the experiments.
Constructing of decay currents was required due to the overlap of
the different oxidation and reduction peaks. Realistic peak anodic
and cathodic currents of the cyclic voltammograms of complexes
1–4 were determined by constructing a decay current for each over-
lapping peak according to a method described in Figure S1 in the
Supplementary Material.
J. C. Swarts, T. G. Vosloo, S. J. Cronje, W. C. Du Plessis, C. E. J.
Van Rensburg, E. Kreft, J. E. Van Lier, Anticancer Res. 2008,
28, 2781; c) B. Weber, A. Serafin, J. Michie, C. E. J.
Van Rensburg, J. C. Swarts, L. Baum, Anticancer Res. 2004, 24,
763.
W. C. Du Plessis, J. J. C. Erasmus, G. J. Lamprecht, J. Conradie,
T. S. Cameron, M. A. S. Aquino, J. C. Swarts, Can. J. Chem.
1999, 77, 378.
J. Conradie, G. J. Lamprecht, S. Otto, J. C. Swarts, Inorg. Chim.
Acta 2002, 328, 191.
a) A. Auger, J. C. Swarts, Organometallics 2007, 26, 102; b)
W. L. Davis, R. F. Shago, E. H. G. Langner, J. C. Swarts, Poly-
hedron 2005, 24, 1611.
For a discussion of the kinetics of keto-enol conversion of fer-
rocene β-diketones see: W. C. Du Plessis, W. L. Davis, S. J.
Cronje, J. C. Swarts, Inorg. Chim. Acta 2001, 314, 97. A general
treatment of β-diketone tautomers can be found in: R. C.
Mehrotra, R. Bphra, D. P. Gaur, Metal β-diketonates and Allied
Derivates, Academic Press, London, 1978.
W. C. Du Plessis, T. G. Vosloo, J. C. Swarts, J. Chem. Soc., Dal-
ton Trans. 1998, 2507.
a) P. R. Wells, in Progress in Physical Organic Chemistry, John
Wiley & Sons, New York, 1968; vol. 6, p. 111–145; b) R. E.
Kagarise, J. Am. Chem. Soc. 1955, 77, 1377.
[9]
[10]
[11]
[12]
[13]
[14]
[15]
a) H. J. Gericke, N. I. Barnard, E. Erasmus, J. C. Swarts, M. J.
Cook, M. A. S. Aquino, Inorg. Chim. Acta 2010, 363, 2222; b)
D. H. Evans, K. M. O’Connell, R. A. Peterson, M. J. Kelly, J.
Chem. Educ. 1983, 60, 290; c) P. T. Kissinger, W. R. Heineman,
J. Chem. Educ. 1983, 60, 702; d) J. J. Van Benshoten, L. Y.
Lewis, W. R. Heineman, J. Chem. Educ. 1983, 60, 772; e) G. A.
Mobbott, J. Chem. Educ. 1983, 60, 697.
Supporting Information (see footnote on the first page of this arti-
cle): A diagram to explain how peak currents and potentials may
be estimated for closely overlapping peaks, and a Table giving po-
tentials at scan rates of 50–250 mV s–1.
[16]
a) C. Creutz, H. Taube, J. Am. Chem. Soc. 1969, 91, 3988; b)
M. J. Cook, I. Chambrier, G. White, E. Fourie, J. C. Swarts,
Dalton Trans. 2009, 1136; c) N. Van Order, W. E. Geiger, T. E.
Bitterwolf, A. L. Reingold, J. Am. Chem. Soc. 1987, 109, 5680;
d) D. T. Pierce, W. E. Geiger, Inorg. Chem. 1994, 33, 373; e) A.
Auger, A. J. Muller, J. C. Swarts, Dalton Trans. 2007, 3623; f)
W. E. Geiger, N. Van Order, D. T. Pierce, T. E. Bitterwolf, A. L.
Reingold, N. D. Chasteen, Organometallics 1991, 10, 2403.
J. Conradie, T. S. Cameron, M. A. S. Aquino, G. J. Lamprecht,
J. C. Swarts, Inorg. Chim. Acta 2005, 358, 2530.
a) D. Menglet, A. M. Bond, K. Coutinho, R. S. Dickson, G. G.
Lazarev, S. A. Olsen, J. R. Pilbrow, J. Am. Chem. Soc. 1998,
120, 2086; b) F. Barriere, W. E. Geiger, Organometallics 2001,
20, 2133; c) I. Kovacik, H. Gevert, M. Schmittel, R. Söllner,
Inorg. Chim. Acta 1998, 276, 435.
Acknowledgments
[17]
[18]
Financial assistance from the Central Research Fund of the Uni-
versity of the Free State is gratefully acknowledged.
[1] a) P. M. Maitlis, A. Haynes, G. J. Sunley, M. J. Howard, J.
Chem. Soc., Dalton Trans. 1996, 2187; b) L. Cavallo, M. Sola,
J. Am. Chem. Soc. 2001, 123, 12294; c) A. Haynes, P. M.
Maitlis, G. E. Morris, G. J. Sunley, H. Adams, P. W. Badger,
C. M. Bowers, D. B. Cook, P. I. P. Elliot, T. Ghaffer, H. Green,
T. R. Griffin, M. Payne, J. M. Pearson, M. J. Taylor, P. W. Vick-
ers, R. J. Watt, J. Am. Chem. Soc. 2007, 126, 2847; d) J. Jones,
Platinum Met. Rev. 2000, 44, 94.
[19]
[20]
D. E. Richardson, H. Taube, Inorg. Chem. 1981, 20, 1287.
J. Stary, The Solvent Extraction of Metal Chelates, MacMillan,
New York, 1964, p. 196.
M. Ellinger, H. Duschner, K. Starke, J. Inorg. Nucl. Chem.
1978, 40, 1063.
[21]
[22]
[23]
[24]
[2] J. Conradie, G. J. Lamprecht, A. Roodt, J. C. Swarts, Polyhe-
dron 2007, 26, 5075.
D. Lamprecht, G. J. Lamprecht, Inorg. Chim. Acta 2000, 309,
72.
[3] J. Conradie, J. C. Swarts, Organometallics 2009, 28, 1018.
[4] a) J. A. Venter, J. G. Leipoldt, R. van Eldik, Inorg. Chem. 1991,
30, 2207; b) G. J. J. Steyn, A. Roodt, J. G. Leipoldt, Inorg.
Chem. 1992, 31, 3477; c) M. M. Conradie, J. Conradie, Inorg.
Chim. Acta 2008, 361, 2285; d) N. F. Stuurman, J. Conradie, J.
Organomet. Chem. 2009, 694, 259.
[5] F. Spanig, C. Kolvacs, F. Hauke, K. Ohlubo, F. Fukuzumi,
D. M. Guldi, A. Hirsch, J. Am. Chem. Soc. 2009, 131, 8180.
[6] a) A. Klapars, K. R. Clampos, C. Chen, R. P. Volante, Org.
Lett. 2005, 7, 1185; b) Q. Shen, S. Shekhar, J. P. Stambuli, J. F.
Hartwig, Angew. Chem. 2005, 117, 1395; Angew. Chem. Int. Ed.
2005, 44, 1371; c) V. Percec, L.-Y. Bae, D. H. Hill, J. Org. Chem.
1995, 60, 1060.
M. Fatima, G. C. da Silva, A. M. Trzeciak, J. J. Ziolkowski,
A. J. L. Pombeiro, J. Organomet. Chem. 2001, 620, 174.
a) F. Barriere, R. U. Kirss, W. E. Geiger, Organometallics 2005,
24, 48, and references cited therein; b) S. Trupia, A. Nafady,
W. E. Geiger, Inorg. Chem. 2003, 42, 5480; c) F. Barriere, N.
Camire, W. E. Geiger, U. T. Mueller-Westerhoff, R. Sanders, J.
Am. Chem. Soc. 2002, 124, 7262; d) F. Barriere, W. E. Geiger,
J. Am. Chem. Soc. 2006, 128, 3980; e) A. Nafady, T. T. Chin,
W. E. Geiger, Organometallics 2006, 25, 1654; f) D. S. Chong,
J. Slote, W. E. Geiger, J. Electroanal. Chem. 2009, 630, 28.
a) J. C. Swarts, A. Nafady, J. H. Roudebush, S. Trupia, W. E.
Geiger, Inorg. Chem. 2009, 48, 2156; b) E. Fourie, J. C. Swarts,
I. Chambrier, M. J. Cook, Dalton Trans. 2009, 1145; c) K. C.
Kemp, E. Fourie, J. Conradie, J. C. Swarts, Organometallics
2008, 27, 353; d) I. Chambrier, D. L. Hughes, J. C. Swarts, B.
Isara, M. J. Cook, Chem. Commun. 2006, 3504.
[25]
[7] P. J. Swarts, M. Immelman, G. J. Lamprecht, S. E. Greyling,
J. C. Swarts, S. Afr. J. Chem. 1997, 50, 208.
[8] a) J. C. Swarts, D. M. Swarts, M. D. Maree, E. W. Neuse, C.
La Madeleine, J. E. van Lier, Anticancer Res. 2001, 21, 2033; b)
2448
www.eurjic.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2011, 2439–2449