Journal of the American Chemical Society
Communication
also viable substrates, providing meta-substituted products with
good selectivity (17−23). Notably, there does not appear to be
any catalyst inhibition with these pyridine substrates,
presumably because the Ir contains strongly coordinating
cyclometalated phenylpyridine ligands.
A proposed catalytic cycle for the current transformation is
shown in Scheme 3. This cycle begins with photoexcitation of
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Scheme 3. Proposed Mechanism
We acknowledge NIH (GM073836) for support.
REFERENCES
■
(1) (a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003,
103, 893. (b) Bhattacharya, S.; Chaudhuri, P. Curr. Med. Chem. 2008,
15, 1762. (c) Mcgrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem.
Educ. 2010, 87, 1348.
(2) Montgomery, J. H. Agrochemicals Desk Reference: Environmental
Data; CRC Press: Boca Raton, FL, 1993.
(3) (a) D’Aprano, G.; Leclerc, M.; Zotti, G.; Schiavon, G. Chem.
Mater. 1995, 7, 33. (b) Yeh, J.-M.; Liou, S.-J.; Lai, C.-Y.; Wu, P.-C.;
Tsai, T.-Y. Chem. Mater. 2001, 13, 1131.
(4) Kremer, C. B. J. Am. Chem. Soc. 1939, 61, 1321.
(5) (a) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42,
5400. (b) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450. (c) Evano,
G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054. (d) Hartwig,
J. F. Acc. Chem. Res. 2008, 41, 1534. (e) Surry, D. S.; Buchwald, S. L.
Chem. Sci. 2011, 2, 27.
(6) Smith, M. B.; March, J. March’s Advanced Organic Chemistry:
Reactions, mechanisms, and structure, 5th ed.; Wiley: New York, 2001; p
1552−1554.
Ir(ppy)3 to generate Ir(ppy)3* (step a). Single electron transfer
from Ir(ppy)3* to 1g then results in fragmentation of the N-
acyloxyphthalimide to generate an N-centered phthalimidyl
(7) For reviews on arene C−H amination: (a) Beccalli, E. M.;
Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107,
5318. (b) Thansandote, P.; Lautens, M. Chem.Eur. J. 2009, 15,
5874. (c) Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S. Chem. Rev. 2010,
110, 824. (d) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(e) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011,
40, 5068. (f) Engle, K. M.; Mei, T.-S.; Wang, X.; Yu, J.-Q. Angew.
Chem., Int. Ed. 2011, 50, 1478. (g) Wendlandt, A. E.; Suess, A. M.;
Stahl, S. S. Angew. Chem. Int. Ed. 2011, 50, 11062. (h) Song, G.; Wang,
F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651. (i) Dequirez, G.; Pons, V.;
Dauban, P. Angew. Chem. Int. Ed. 2012, 51, 7384. (j) Beletskaya, I. P.;
Cheprakov, A. V. Organometallics 2012, 31, 7753.
(8) For Pd-catalyzed examples: (a) Thu, H.-Y.; Yu, W.-Y.; Che, C.-M.
J. Am. Chem. Soc. 2006, 128, 9048. (b) Li, B.-J.; Tian, S.-L.; Fang, Z.;
Shi, Z.-J. Angew. Chem., Int. Ed. 2008, 47, 1115. (c) Ng, K.-H.; Chan,
A. S. C.; Yu, W.-Y. J. Am. Chem. Soc. 2010, 132, 12862. (d) Xiao, B.;
Gong, T.-J.; Xu, J.; Liu, Z.-J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 1466.
(e) Sun, K.; Li, Y.; Xiong, T.; Zhang, J.; Zhang, Q. J. Am. Chem. Soc.
2011, 133, 1694. (f) Yoo, E. J.; Ma, S.; Mei, T.-S.; Chan, K. S. L.; Yu,
J.-Q. J. Am. Chem. Soc. 2011, 133, 7652.
(9) For Rh-catalyzed examples: (a) Ng, K.-H.; Zhou, Z.; Yu, W.-Y.
Org. Lett. 2012, 14, 272. (b) Grohmann, C.; Wang, H.; Glorius, F. Org.
Lett. 2012, 14, 656. (c) Kim, J. Y.; Park, S. H.; Ryu, J.; Cho, S. H.; Kim,
S. H.; Chang, S. J. Am. Chem. Soc. 2012, 134, 9110.
(10) For Cu-catalyzed examples: (a) Uemura, T.; Imoto, S.; Chatani,
N. Chem. Lett. 2006, 35, 842. (b) Chen, X.; Hao, X.-S.; Goodhue, C.
E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790. (c) John, A.; Nicholas,
K. M. J. Org. Chem. 2011, 76, 4158.
(11) For an Ir catalyzed example: Ryu, J.; Kwak, J.; Shin, K.; Lee, D.;
Chang, S. J. Am. Chem. Soc. 2013, 135, 12861.
(12) For Pd-catalyzed intramolecular C−H amination: (a) Tsang, W.
C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 14560.
(b) Inamoto, K.; Saito, T.; Katsuno, M.; Sakamoto, T.; Hiroya, K. Org.
+
radical (PhthN•), trifluoroacetate anion, and Ir(ppy)3 (step
b). The PhthN• next adds to the arene, forming a neutral
radical intermediate (step c) which can be oxidized by
+
Ir(ppy)3 , regenerating the photocatalyst (step d). The
trifluoroacetate anion, formed upon reductive cleavage of the
N−O bond, deprotonates the cationic Wheland intermediate,
providing 1 equiv of aminated product and trifluoroacetic acid
(step e).30
Preliminary mechanistic studies show that irradiation with
visible light is necessary for reaction progress. The C−H
amination ceases when the reaction is removed from light and
only recommences when the light is turned back on (see
Scheme S1 for full details of this experiment).31 This
experiment is consistent with the mechanism proposed in
Scheme 3. Although a radical chain process cannot be
completely ruled out, these results indicate that any chain
propagation is very short-lived.18
In conclusion, we describe a mild photocatalytic method for
the C−H amination of arene and heteroarene substrates. A key
enabling advance in this work is the design of N-
acyloxyphthalimides as precursors to nitrogen-based radical
intermediates for these transformations. Our C−H amination
method addresses several key limitations of prior work in the
field, as it circumvents the requirement for excesses of
expensive oxidants as well as elevated temperatures. The
heterocyclic amine products are particularly common in
biologically active molecules. Ongoing studies are focused on
applying this reaction to more complex molecules as well as
gaining detailed insights into the reaction mechanism.
Lett. 2007, 9, 2931. (c) Muniz, K. J. Am. Chem. Soc. 2007, 129, 14542.
̃
ASSOCIATED CONTENT
* Supporting Information
Experimental details and complete characterization data for all
new compounds. This material is available free of charge via the
■
(d) Tsang, W. C. P.; Munday, R. H.; Brasche, G.; Zheng, N.;
Buchwald, S. L. J. Org. Chem. 2008, 73, 7603. (e) Wasa, M.; Yu, J.-Q. J.
Am. Chem. Soc. 2008, 130, 14058. (f) Jordan-Hore, J. A.; Johansson, C.
C. C.; Gulias, M.; Beck, E. M.; Gaunt, M. J. J. Am. Chem. Soc. 2008,
130, 16184. (g) Miura, T.; Murakami, M. Chem. Lett. 2009, 38, 328.
S
5609
dx.doi.org/10.1021/ja501906x | J. Am. Chem. Soc. 2014, 136, 5607−5610