11
2, 312-318; (d) Qian, S.; Zhao, G. Chem. Commun., 2012, 48, 3530–
3033, 2959, 2926, 2897, 1657, 1598, 1543, 1491, 1452, 1400,
1358, 1302, 1265, 1251, 1172, 1130, 1027, 951, 845, 797, 757,
739, 700, 643, 630 and 589 cm-1; 1H NMR (400 MHz, CDCl3): δ
= 8.29-8.30 (1 H, dd, J = 1.5 & 4.7 Hz), 8.15-8.18 (1 H, dd, J =
1.6 & 7.9 Hz), 7.37-7.39 (2 H, dd, J = 2.6 & 7.8 Hz),7.19-7.27 (7
H, m), 7.13-7.15 (2 H, m),7.0-7.04 (1 H, dd, J = 4.8 & 7.9 Hz),
5.87 (1 H, s), 5.36 (2 H, s), 3.53 (1 H, br s); 13C NMR (100 MHz,
CDCl3): δ = 148.1, 143.5, 137.4, 131.8, 128.7, 128.6, 128.48,
128.40, 127.7, 127.6, 126.2, 122.5, 118.6, 116.1, 114.4, 88.9,
85.3, 58.7 and 47.9.
ACCEPTED MANUSCRIPT
3532; (e) Zhao, H.; Meng, X.; Huang, Y. Chem. Commun., 2013, 49,
10513-10515; (f) Ilangovan, A.; Sakthivel, P. RSC Adv., 2014, 4,
55150–55161.
(a) Ruiz-Sanchis, P.; Savina, S. A.; Albericio, F.; Álvarez, M. Chem. –
Eur. J. 2011, 17, 1388–1408; (b) Gribble, G. W. Top. Heterocycl.
Chem. 2010, 26, 1–480; (c) Vicente, R. Org. Biomol. Chem. 2011, 9,
6469–6480. And references cited therein.
3.
4. (a) Joule, J. A. In Science of Synthesis; Vol. 10 (Ed.: E. J. Thomas)
Houben-Weyl Methods of Molecular Transformations, Thieme:
Stuttgart, 2000; chapter 10.13; (b) Humphrey, G. R.; Kuethe, J. T.
Chem. Rev. 2006, 106, 2875–2911; (c) Bandini, M.; Melloni, A.;
Tommasi, S.; Umani-Ronchi, A. Synlett 2005, 1199–1222; (d)
Marqués-López, E.; Diez-Martinez, A.; Merino, P.; Herrera, R. P. Curr.
Org. Chem. 2009, 13, 1585–1609; (e) Bandini, M.; Eichholzer, A.
Angew. Chem., Int. Ed. 2009, 48, 9608–964; (f) Terrasson, V.; de
Figueiredo, R. M.; Campagne, J. M. Eur. J. Org. Chem. 2010, 2635–
2655; (g) Zeng, M.; You, S. -L. Synlett 2010, 1289–1301; (h) Chauhan,
P.; Chimni, S. S. RSC Adv. 2012, 2, 6117–6134; (i) Lounasmaa, M.;
Tolvanen, A. Nat. Prod. Rep. 2000, 17, 175–191; (j) Hibino, S.; Choshi,
T. Nat. Prod. Rep. 2001, 18, 66–87; (k) Wu, Y.-J. Top. Heterocycl.
Chem. 2010, 26, 1–29.
5. (a) Pindur, U.; Lemster, T. Curr. Med. Chem. 2001, 8, 1681–1698; (b)
Kochanowska-Karamyan, A. J.; Hamann, M. T. Chem. Rev. 2010, 110,
4489–4497; (c) Fahy, E.; Potts, B. C. M.; Faulkner, D. J.; Smith, K. J.
Nat. Prod. 1991, 54, 564-569; (d) Garbe, T. R.; Kobayashi, M.;
Shimizu, N.; Takesue, N.; Ozawa, M.; Yukawa, H. J. Nat. Prod. 2000,
63, 596-598; (e) Safe, S.; Papineni, S.; Chintharlapalli, S. Cancer Lett.
2008, 269, 326–338; (f) Bell, M. C.; Crowley-Nowick, P.; Bradlow, H.
L.; Sepkovic, D. W.; Schmidt-Grimminger, D.; Howell, P.; Mayeaux, E.
J.; Tucker, A.; Turbat-Herrera, E. A.; Mathis, J. M. Gynecol. Oncol.
2000, 78, 123–129; (g) Hong, C.; Firestone, G. L.; Bjeldanes, L. F.
Biochem. Pharmacol. 2002, 63, 1085–1097. (h) Le, H. T.; Schaldach,
C. M.; Firestone, G. L.; Bjeldanes, L. F. J. Biol. Chem. 2003, 278,
21136–21145; (i) Maciejewska, D.; Niemyjska, M.; Wolska, I.;
Włostowski, M.; Rasztawicka, M. Z. Naturforsch. 2004, 59b, 1137–
1142; (j) Lee, C. -H.; Yao, C. -F.; Huang, S. -M.; Ko, S.; Tan, Y. -H.;
Lee-Chen, G. -J.; Wang, Y. -C. Cancer 2008, 113, 815–825; (k) Veluri,
R.; Oka, I.; Wagner-Döbler, I.; Laatsch, H. J. Nat. Prod., 2003, 66,
1520–1523.
6. (a) Fischer, E. Chem. Ber. 1886, 19, 2988–2991; (b) Fischer, E. Justus
Liebigs Ann. Chem. 1887, 242, 372–383; (c) Shiri, M.; Zolfigol, M. A.;
Kruger, H. G.; Tanbakouchian, Z. Chem. Rev. 2010, 110, 2250–2293.
7. (a) Bandgar, B. P.; Shaikh, A. K. Tetrahedron Lett., 1959, 2003, 44; (b)
Silveira, C. C.; Mendes, S. R.; Líbero, F. M.; Lenardão, E. J.; Perin, G.
Tetrahedron Lett., 2009, 50, 6060-6063; (c) Xia, M.; Wang, S. B.;
Yuan, W. B. Synth. Commun., 2004, 34, 3175-3182; (d) Zeng, X. F.; Ji,
S. J.; Wang, S. Y. Tetrahedron, 2005, 61, 10235-10241; (e) Ji, P. J.;
Zhou, M. F.; Qu, D. G.; Wang, S. V.; Loh, T. P. Synlett., 2003, 2077-
2079; (f) Magarajan, R.; Perumal, P. T. Tetrahedron, 2002, 58, 1229-
1232; (g) Shi, M.; Cui, S. -C.; Li, Q. -J. Tetrahedron, 2004, 60, 6679-
6684; (h). Ramesh, C.; Banerjee, J.; Pal, R.; Das, B. Adv. Synth. Catal.,
2003, 345, 557-559; (i) Karthik, M.; Tripathi, A. K.; Gupta, N. M.;
Palanichamy, M.; Murugesan, V. Catal. Commun., 2004, 5, 371-375; (j)
Yadav, J. S.; Reddy, B. V. S.; Sunitha, S. Adv. Synth. Catal., 2003, 345,
349-352; (k) Chakraborti, A. K.; Roy, S. R.; Kumar, D.; Chopra, P.
Green Chem., 2008, 10, 1111-1118; (l) Veisi, H.; Maleki, B.; Eshbala,
F. H.; Veisi, H.; Masti, R.; Ashrafi, S. S.; Baghayeri, M. RSC Adv.
2014, 4, 30683-30688; (m) Badigenchala, S.; Ganapathy, D.; Das, A.;
Singh, R.; Sekar, G. Synthesis, 2014, 46, 101-109.
4.1.53.
(1-Benzyl-1H-pyrrolo[2,3-b]pyridin-3-yl)
(phenyl)
methanol (6cc)
Followed general procedure. The aldehyde27 5c (50 mg 0.21
mmol), THF (2 mL), and phenylmagnesium bromide [2 mL in
THF, 0.27 mmol, freshly prepared from PhBr and Mg]. Alcohol
6cc (43 mg, 0.14 mmol, 65%) as brown oil; Rf = 0.4 (4:1,
hexane:EtOAc); IR (neat): 3408, 3060, 3031, 2926, 2856, 1656,
1597, 1542, 1491, 1491, 1450, 1432, 1401, 1358, 1303, 1172,
1035, 1001, 801, 770, 738, 700, 646, 578 and 417 cm-1; 1H NMR
(400 MHz, CDCl3): δ = 8.19-8.21 (1 H, dd, J = 1.5 & 4.7 Hz),
7.72-7.74 (2 H, dd, J = 1.6 & 7.9 Hz),7.38-7.39 (2 H, d, J = 7.1
Hz), 7.26-7.30 (2 H, td, J = 1.5 & 8.6 Hz), 7.19-7.23 (4 H, m),
7.10-7.13 (2 H, dd, J = 2.1 & 7.9 Hz), 6.94 (1 H, s), 6.90-6.93 (1
H, dd, J = 4.8 & 7.9 Hz), 5.99 (1 H, s), 5.34 ( 2 H, s), 2.99 (1 H,
br s); 13C NMR (100 MHz, CDCl3): δ = 148.1, 143.4, 143.38,
143.34, 143.31, 137.7, 128.7, 128.4, 127.6, 127.5, 126.5, 126.0,
118.8, 117.5, 115.8, 70.5 and 47.8.
4.1.54.
1-Hexyl-3-((1-methyl-1H-indol-3-yl)(thiophen-2-
yl)methyl)-1H-indole (7)
Followed general procedure. The aldehyde 1a (50 mg, 0.314
mmol) and N-hexylindole-3-carboxaldehyde 1b’ (79 mg, 0.314
mmol), THF (5 mL), and 2-thienylmagnesium bromide (3 mL,
0.82 mmol; freshly prepared from 2-bromothiophene and Mg).
BIM 3cb (23 mg, 0.06 mmol, 19%) as a brown viscous oil; BIM
3ag (20 mg, 0.06 mmol, 18%) as a brown viscous oil; hetero
BIM 7 (30 mg, 0.07 mmol, 22%), Rf = 0.6 (9:1, hexane:EtOAc);
IR (neat): 3050, 2957, 2922, 2857, 1735, 1656, 1612, 1546,
1465, 1394, 1363, 1327, 1265, 1221, 1177, 1155, 1121, 1087,
1038, 1012, 894, 853, and 690 cm-1; 1H NMR (400 MHz, CDCl3):
δ = 7.37 (2 H, dd, J = 2.6 & 7.8 Hz), 7.22 (2 H, t, J = 8.3 Hz),
7.05-7.16 (3 H, m), 6.93 (2 H, t, J = 5.7 Hz), 6.80-6.84 (2 H, m),
6.67 (1 H, s), 6.62 (1 H, s), 6.07 (1 H, s), 3.93 (2 H, t, J = 7.1
Hz), 3.61 (3 H, s), 1.68 (2 H, t, J = 6.2 Hz), 1.18-1.21 (6 H, m),
0.77 (3 H, t, J = 6.4 Hz); 13C NMR (100 MHz, CDCl3): δ =
149.4, 137.4, 136.6, 127.9, 127.4, 127.3, 127.0, 126.4, 125.1,
123.5, 121.8, 121.6, 121.4, 120.0, 118.8, 118.7, 118.4, 118.1,
109.5, 109.2, 46.4, 35.3, 32.8, 31.5, 30.2, 26.7, 22.6, 14.1.
8. During the review process of this manuscript, there was a publication
appeared on similar work. Bahuguna, A.; Sharma, R.; Sagara, P. S.;
Ravikumar, P. C. Synlett, 2016, (e-first) DOI: 10.1055/s-0036-
1588885.
9. In case of arylmagnesium halides, we have always isolated byproducts
aldehydes but with low molecular weight Grignard reagents e.g,
MeMgCl or EtMgBr it was not. This may be due to the fact that, the
aldehydes formed (Me-CHO or Et-CHO) might be too volatile to isolate
from column chromatography.
Acknowledgments
We thank CSIR-India for financial support. BSC thanks IIT
Madras for fellowship.
References and notes
1. (a) Tietze, L. F. Chem. Rev. 1996, 96, 115–136; (b) Wasilke, J.-C.;
Obrey, S. J.; Baker, T.; Bazan, G. C. Chem. Rev. 2005, 105, 1001–1020;
(c) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem.; Int.
Ed., 2006, 45, 7134–7186 (d) Kirsch, S. F. Synthesis, 2008, 3183–3204.
(e) Nicolaou, K. C.; Chen, J. S. Chem. Soc. Rev. 2009, 38, 2993–3009.
2. (a) Alza, E.; Laraia, L.; Ibbeson, B. M.; Collins, S.; Galloway, W. R. J.
D.; Stokes, J. E.; Venkitaraman, A. R.; Spring, D. R. Chem. Sci., 2015,
6, 390–396; (b) Nicolaou, K. C.; C. Hale, R. H.; Nilewskia, C.;
Ioannidoua, H. A. Chem. Soc. Rev., 2012, 41, 5185–5238; (c)
Chahdoura, F.; Mallet-Ladeir, S.; Gómez, M. Org. Chem. Front., 2015,
10. Crystallographic data information for BIM 3af has been deposited with
the Cambridge Crystallographic Data Centre with CCDC1408973. The
ORTEP diagram and further details were given in supporting
information (Table 1).
11. (a) Lin, L. P.; Yuan, P.; Jiang, N.; Mei, Y. N.; Zhang, W. J.; Wu, H. M.;
Zhang, A. H.; Cao, J. M.; Xiong, Z. X.; Lu, Y.; Tan, R. X. Org. Lett.,
2015, 17, 2610-2613; (b) Silveira, C. C.; Mendes, S. R.; Villetti, M. A.;
Back, D. F.; Kaufman, T. S. Green Chem., 2012, 14, 2912- 2921.
12. Nakao, Y.; Kanyiva, K. S.; Oda, S.; Hiyama, T. J. Am. Chem. Soc.,
2006, 128, 8146-8147.