1
Í NMR spectrum (500.13 MHz, DMSO-d , ꢄ, ppm, J/Hz): 5.05 (2Í, s, Í-7), 5.55 (1Í, d, J = 7.8, Í-5), 7.05 (1Í, t, J = 7.6,
6
Í-14), 7.13 (1Í, t, J = 7.6, Í-15), 7.43 (1Í, d, J = 7.6, Í-16), 7.50 (1Í, s, Í-9), 7.67 (1Í, d, J = 7.6, Í-13), 7.69 (1Í, d,
13
J = 7.8, Í-6), 11.20 (1Í, s, N-10), 11.50 (1Í, s, N-3). C NMR spectrum (125.47 MHz, DMSO-d , ꢄ, ppm): 42.07 (t, Ñ-7),
6
101.29 (d, Ñ-5), 109.80 (s, Ñ-8), 111.92 (d, Ñ-16), 118.66 (d, Ñ-13), 119.35 (d, Ñ-14), 121.77 (d, Ñ-15), 126.00 (d, Ñ-9),
15
126.23 (s, Ñ-12), 136.52 (s, Ñ-11), 145.05 (d, Ñ-6), 151.28 (s, Ñ-2), 163.89 (s, Ñ-4). N NMR spectrum (50.58 MHz,
DMSO-d ): 132.95 (N-10), 140.78 (N-1), 157.65 (N-3). C H N O .
6
13 11 3 2
1-(1H-Indol-3-ylmethyl)-5-fluoropyrimidine-2,4(1H,3H)-dione (7). MethodA. 5-Fluorouracil (2, 0.20 g, 1.50 mmol)
and gramine N-oxide (4, 0.29 g, 1.50 mmol) produced 7 (0.22 g, 55%) as an amorphous compound.
Method B. 5-Fluorouracil (2, 0.20 g, 1.50 mmol) and gramine methyl iodide (5, 0.47 g, 1.50 mmol) gave 7 (0.23 g, 59%).
Method C. 5-Fluorouracil (2, 0.20 g, 1.50 mmol) and gramine methyl iodide (5, 0.47 g, 1.50 mmol) in the presence
1
of DBU (0.08 mL, 0.56 mmol) gave 7 (0.28 g, 70%). Í NMR spectrum (500.13 MHz, DMSO-d , ꢄ, ppm, J/Hz): 5.05 (2Í,
6
s, Í-7), 7.05 (1Í, t, J = 7.8, Í-14), 7.11 (1Í, t, J = 7.8, Í-15), 7.40 (1Í, d, J = 7.8, Í-16), 7.59 (1Í, s, Í-9), 7.63 (1Í, d,
13
J = 7.8, Í-13), 7.95 (1Í, d, J = 6.0, Í-6), 11.20 (1Í, s, N-10), 11.50 (1Í, s, N-3). C NMR spectrum (125.47 MHz,
DMSO-d , ꢄ, ppm): 42.34 (t, Ñ-7), 109.34 (s, Ñ-8), 111.74 (d, Ñ-16), 118.54 (d, Ñ-13), 119.19 (d, Ñ-14), 121.59 (d, Ñ-15),
6
126.03 (d, Ñ-9), 126.50 (s, Ñ-12), 128.96, 129.21 (d, J = 32.3, Ñ-6), 136.36 (s, Ñ-11), 138.18, 140.00 (d, J = 228, Ñ-5), 149.65
(s, Ñ-2), 157.34, 157.54 (d, J = 26.3, Ñ-4). C H FN O .
13 10
3 2
4-Amino-1-(1H-indol-3-ylmethyl)pyrimidin-2(1H)-one (8). Method A. Cytosine (3, 0.20 g, 1.80 mmol) and
gramine N-oxide (4, 0.34 g, 1.80 mmol) gave 8 (0.13 g, 30%) as an amorphous compound.
Method B. Cytosine (3, 0.20 g, 1.80 mmol) and gramine methyl iodide (5, 0.57 g, 1.80 mmol) gave 8 (0.14 g, 33%).
Method C. Cytosine (3, 0.20 g, 1.80 mmol) and gramine methyl iodide (5, 0.57 g, 1.80 mmol) in the presence of
1
DBU (0.10 mL, 0.67 mmol) gave 8 (0.20 g, 46%). Í NMR spectrum (500.13 MHz, DMSO-d , ꢄ, ppm, J/Hz): 2.73 (2Í, s,
6
NÍ ), 5.05 (2Í, s, Í-7), 5.62 (1Í, d, J = 7.2, Í-5), 7.00 (1Í, t, J = 7.8, Í-14), 7.10 (1Í, t, J = 7.8, Í-15), 7.38 (1Í, d, J = 7.8,
2
13
Í-16), 7.41 (1Í, s, Í-9), 7.58 (1Í, d, J = 7.2, Í-6), 7.68 (1Í, d, J = 7.8, Í-13), 11.20 (1Í, s, N-10). C NMR spectrum
(125.47 MHz, DMSO-d , ꢄ, ppm, J/Hz): 42.90 (t, Ñ-7), 93.77 (d, Ñ-5), 110.75 (s, Ñ-8), 111.76 (d, Ñ-16), 118.50 (d, Ñ-14),
6
118.90 (d, Ñ-13), 121.30 (d, Ñ-15), 125.65 (d, Ñ-9), 126.37 (s, Ñ-12), 136.46 (s, Ñ-11), 145.38 (d, Ñ-6), 156.33 (s, Ñ-2),
15
165.81 (s, Ñ-4). N NMR spectrum (50.58 MHz, DMSO-d , ꢄ, ppm): 104.80 (NÍ ), 132.68 (N-10), 150.80 (N-1), 177.20
6
2
(N-13). C H N O.
13 12
4
Microwave Irradiation of Gramine N-oxide (4). Gramine N-oxide (4, 0.20 g, 1.00 mmol) in DMF (2 mL) was
irradiated with microwaves (300 W) for 2 h. The reaction mixture boiled during the treatment. The homogeneous mixture was
cooled and poured into cold distilled H O (~20 mL). The aqueous layer was extracted with CHCl (3 ꢃ 15 mL). The
2
3
combined organic fraction was washed with distilled H O (20 mL) and dried over Na SO . The solvent was evaporated to
2
2
4
afford 9 (0.13 g, 71%). The spectral data agreed with those published [11].
ACKNOWLEDGMENT
The work was supported financially by the Basic Research Program of OKhNM RAS for 2016 (OKh-01) and a grant
of the 2014 competition in RSF priority direction Fundamental Scientific Research and Exploratory Research by Individual
Scientific Groups (Appl. No. 14-13-01307). Information support came from RFBR Grant 13-00-14056. Spectra studies used
equipment of the Khimiya CCU, UfIC, RAS.
REFERENCES
1.
2.
3.
J. P. Henderson, J. Byun, J. Takeshita, and J. W. Heinecke, J. Biol. Chem., 278, 23522 (2003).
M. Hanus, M. Kabelac, D. Nachtigallova, and P. Hobza, Biochemistry, 44, 1701 (2005).
J. Takeshita, J. Byun, T. Q. Nhan, D. K. Pritchard, S. Pennathur, S. M. Schwartz, A. Chait, and J. W. Heinecke,
J. Biol. Chem., 281, 3096 (2006).
4.
5.
M. S. Novikov and N. Geisman, Khim. Geterotsikl. Soedin., 10, 1537 (2013).
A. R. Gimadieva, V. A. Myshkin, A. G. Mustafin, Yu. N. Chernyshenko, N. S. Borisova, Yu. S. Zimin,
and I. B. Abdrakhmanov, Khim.-farm. Zh., 48 (2), 25 (2014).
336