3
2.
3.
a) Odinets I. L.; Matveeva, E. V. Russ. Chem. Rev. 2012, 81, 221-238.
The reusability of the Fe3O4@MgO NPs was also studied for the
reaction of 1a with diethylphosphite in the presence of CCl4. The
NPs were collected using a magnet and washed four times with
deionized water and methanol and reused after drying at 60 °C
for 3 h for further reactions. The catalytic activity did not
considerably decrease after four catalytic cycles (5% decreases
after four catalytic cycles).
b) Kaboudin, B.; Fallahi, M. Tetrahedron Lett. 2011, 52, 4346-4348. c)
Kaboudin, B.; Saadati, F. Tetrahedron Lett. 2009, 50, 1450. d)
Kaboudin, B.; Sorbiun, M. Tetrahedron Lett. 2007, 48, 9015-9017.
a) Mével, M.; Montier, T.; Lamarche, F.; Delépine, P.; Le Gall, T.;
Yaouanc, J.-J.; Jaffrès, P.-A.; Cartier, D.; Lehn, P.; Clément, J.-C.
Bioconjugate Chem. 2007, 18, 1604–1611. b) Berchel, M.; Le Gall, T.;
Couthon-Gourvès, H.; Haelters, J.-P.; Montier, T.; Midoux, P.; Lehn,
P.; Jaffrès, P.-A. Biochimie 2012, 94, 33–41. c) Mével, M.; Breuzard,
G.; Yaouanc, J.-J.; Clément, J.-C.; Lehn, P.; Pichon, C.; Jaffrès, P.-A.;
Midoux, P. ChemBioChem 2008, 9, 1462–1471.
Jin, P.; Liu, K.; Ji, S.; Ju, Y.; Zhao, Y. Synthesis 2007, 407–411.
a) Yang, L.; Zeng, R.; Li, C.; Li, G.; Qiao, R.; Hu, L.; Li, Z. Bioorg.
Med. Chem. Lett. 2009, 19, 2566–2569. b) Yang, L.; Chen, L.; Zeng,
R.; Li, C.; Qiao, R.; Hu, L.; Li, Z. Bioorg. Med. Chem. 2010, 18, 117–
123.
a) Jones, D. M.; Noone, T. M. J. Appl. Chem. 1962, 12, 397–405. b)
Wilson, B. N.; Gordon, I.; Hindersinn, R. R. Ind. Eng. Chem. Prod. Res.
Dev. 1974, 13, 85–89.
a) Toda, Y.; Pink, M.; Johnston, J. N. J. Am. Chem. Soc. 2014, 136,
14734-14737. b) Hulst, R.; Heres, H.; Fitzpatrick, K.; Peper, N. C. M.
W.; Kelogg, R. M. Tetrahedron:Asymmetry 1996, 7, 2755-2760. c)
Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029-3069.
A
proposed
mechanism
for
the
synthesis
of
phosphoroamidates via the Atherton-Todd coupling using
Fe3O4@MgO NPs is outlined in Scheme 5. The process is
thought to proceed via the reaction of dialkyl phosphite with
CCl4 to give dialkyl chlorophosphate 2, a known intermediate,
followed by nucleophilic substitution by the amine to give
phosphoroamidate 4. The reaction was carried out in an open
flask and the generation of HCl gas was detected with wet pH
paper test.
4.
5.
6.
7.
8.
a) Slobbe, P.; Ruijter, E.; Orru, R. V. A. Med. Chem. Commun. 2012, 3,
1189-1218; b) Ruijter, E.; Scheffelaar, R.; Orru, R. V. A. Angew. Chem.
Int. Ed. 2011, 50, 6234-6246. c) Domling, A.; Ugi, I. Angew. Chem. Int.
Ed. 2000, 39, 3168-3210; d) Estevez, V.; Villacampa, M.; Menendez, J.
C. Chem. Soc. Rev. 2010, 39, 4402-4421. e) de Graaff, C.; Ruijter, E.;
Orru, R. V. A. Chem. Soc. Rev. 2012, 41, 3969-4009; f) Gu, Y.; Green
Chem. 2012, 14, 2091-2128; g) Climent, M. J.; Corma, A.; Iborra, S.
RSC Adv. 2012, 2, 2016-2058. h) Kaboudin, B.; Karami, L.; Kato, J.;
Aoyama, H.; Yokomatsu, T. Tetrahedron Lett. 2013, 54, 4872-4875; i)
Tejedor, D.; Garcia-Tellado, F. Chem. Soc. Rev. 2007, 36, 484-491; j)
Marson, C. M. Chem. Soc. Rev. 2012, 41, 7712-7722.
9.
a) Atherton, F. R.; Openshaw, H. T.; Todd, A. R. J. Chem. Soc. 1945,
660–663. b) Atherton, F. R.; Todd, A. R. J. Chem. Soc. 1947, 674–678.
Scheme 5: Proposed mechanism for the synthesis of
phosphoroamidate 4
10. Le Corre, S. S.; Berchel, M.; Gorves, H. C.; Haelters, J.-P.; Jaffres, P.-
A. Beilstein J. Org. Chem. 2014, 10, 1166-1196.
11. Steinberg, G. M. J. Org. Chem. 1950, 15, 637–647.
12. a) Troev, K.; Kirilov, E. M. G.; Roundhill, D. M. Bull. Chem. Soc. Jpn.
1990, 63, 1284–1285. b) Georgiev, E. M.; Kaneti, J.; Troev, K.;
Roundhill, D. M. J. Am. Chem. Soc. 1993, 115, 10964–10973.
13. For example: a) Sadaba, I.; Gorbanov, Y. Y.; Kegnaes, S.; Putluru, S. S.
R.; Berg, R. W.; Riisager, A. ChemCatChem 2013, 5, 282-293; b)
Shimura, S.; Miura, H.; Tsukada, S.; Wada, K.; Hosokawa, S.; Inoue,
M. ChemCatChem 2012, 4, 2062-2067; c) Kapper, H.; Bouchmella, K.;
Mutin, P. H.; Goettmann, F. ChemCatChem 2012, 4, 1813-1818; d)
Review: Liu, D. S.; Bai, S.-Q.; Zheng, Y.; Shah, K. W.; Han, M.-Y.
ChemCatChem 2012, 4, 1462-1484.
In conclusion, we have reported a simple, and convenient
method for the synthesis of phosphoroamidates via the Atherton-
Todd coupling reaction of amines with dialkyl phosphites. A
simple work-up, mild reaction conditions, moderate to good
yields, and clean reactions should make this method an attractive
and a useful contribution to present methodologies.
Acknowledgements
14. For example: a) Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. L. Adv. Mater.
2005, 17, 582, b) Zeng, H.; Li, J.; Liu, J. P.; Wang, Z. L.; Sun, S. H.
Nature 2002, 420, 39517; c) Jordan, A.; Scolz, R.; Maier-Hauff, K.;
Johannsen, M.; Wust, P.; Nadobny, J.; Schirra, H.; Schmidt, H.; Deger,
S.; Loening, S.; Lanksch, W.; Felix, R. J. Magen. Magn. Mater. 2001,
225, 118; d) Wu, Y.; Chu, M.; Shi, B.; Li, Z. Appl. Biochem.
Biotechnol. 2011, 168, 813-825.
The authors thank the Institute for Advanced Studies in Basic
Sciences for support of this work. Thanks are also given to
Professor Behzad Haghighi for the atomic absorption analysis of
the catalyst and Ms Shahla Heydari for assistance in the
preparation of the paper.
15. a) Zhang, Q.; Su, H.; Luo, J.; Wei, Y. Green Chem. 2012, 14, 201-208.
b) Che, C.; Li, W.; Lin, S.; Chen, J.; Zheng, J.; Wu, L.-C.; Zheng, Q.;
Zhang, G.; Yang, Z.; Jiang, B. Chem. Commun. 2009, 5990-5992. c) Li,
P.; Wang, L.; Zhang, L.; Wang, G.-W. Adv. Synth. Catal. 2012, 354,
1307-1318. d) Chen, X.; Rao, J.; Wang, J.; Gooding, J. J.; Zou, G.;
Zhang, Q. Chem. Commun. 2011, 47, 10317-10319. e) Kaboudin, B.;
Mostafalu, R.; Yokomatsu, T. Green Chem. 2013, 15, 2266-2267. f)
Elliott, D. W.; Zhang, W.-X. Environ. Sci. Technol. 2001, 35, 4922-
4926. g) Mahendran, V. Appl. Phys. Lett. 2012, 100, 073104. h) Hyeon,
T. Chem Comm. 2003, 927-934.
16. Matteis, L. D.; Custardoy, L.; Fernandez-Pacheco, R.; Magen, C.; de la
Fuente, J. M.; Marquina, C.; Ibarra, M. R. Chem. Mater. 2012, 24, 451-
456.
17. For example: a) Kaboudin, B. Karimi, M. Bioorg. Med. Chem. Lett.
2006, 16, 5324-5326. b) Kaboudin, B. Phosphorus, Sulfur, Silicon 2002,
177, 1749-1751. c) Kaboudin, B.; Farjadian, F. Beilstein J. Org. Chem.
2006, 2:4. d) Kaboudin, B.; Haruki, T. Yamagishi, T. Yokomatsu, T.
Synthesis 2007, 3226-3232. e) Kaboudin, B.; Karimi, M.; Zahedi, H.
Org. Prep. Proced. Int. 2008, 40, 399-404.
Supplementary Material
1
Spectroscopic characterization data and copies of H NMR,
13C NMR, and 31P NMR for compounds 4a-4p. Supplementary
data associated with this article can be found, in the online
version
References and notes
1.
a) Alonso, C.; de losSantos, J. M.; Vicario, J.; Palacios, F. Arkivoc
2011, 3, 221-253. b) Allen, D. W. Organophosphorus Chemistry 2014,
43, 1-51. c) Sues, P. E.; Lough A. J.; Morris, R. H. Chem. Commun.
2014, 50, 4707-4710. d) Toy, A.; Walsh, E. N. Phosphorus Chemistry
in Everyday Living, American Chemical Society, Washington, DC, 2nd
edn., 1987. b) Quin, L. D. A Guide to Organophosphorus Chemistry,
Wiley, New York, 2000. c) Gallo, M. A.; Lawryk, N. J. Organic
Phosphorus Pesticides. The Handbook of Pesticide Toxicology,
Academic Press, San Diego, 1991. c) Engel, R. Chem Rev. 1977, 77,
18. Kaboudin, B.; Kazemi, F.; Habibi, F. J. Iran. Chem. Soc. 2015, 12, 469-
475.
General procedure for the synthesis of phosphoroamidates:
A
349-367. d) Frank, A. W. Chem. Rev. 1961, 61, 389-424. e)
mixture of dialkyl phosphite (5 mmol) and CCl4 (1 mL, 10 mmol) were
added dropwise to a stirred mixture of the amine (5 mmol) in the
presence of Fe3O4@MgO NPs (15 mol%, 0.17 g, calculated according
to molecular weight of Fe3O4-MgO) in an open flask. The resultant
mixture was stirred for 1-12 h at room temperature (see Table 2).
EtOAc (50 mL) was added to reaction mixture and stirred for 10 min.
Hilderbrand, R. L., in “The Role of Phosphonates in Living Systems”,
CRC Press: Boca Raton, 1982. f) Redmore, D. in “Topics in
Phosphorus Chemistry”; Griffith, E. J.; Grayson, M. Eds.; Vol. 8;
Wiley: New York, 1976. g) Moonen, K.; Laureyn, I.; Stevens, C. V.
Chem. Rev. 2004, 104, 6177-6215.